# A SIMULATION MODEL OF EASTERN AIRLINE'S MOBILE LOUNGE SYSTEM

# AT ATLANTA HARTSFIELD INTERNATIONAL AIRPORT

# by

| Dwighd D. Delgado     | 237-9454 |
|-----------------------|----------|
| Edward L. Holcomb     | 325-0161 |
| Carol A. Pfretzschner | 892-9899 |
| Fernando Valverde     | 874-3592 |

# March 1977

Design Project Advisors at Georgia Tech:

Dr. David E. Fyffe 894-2310

Dr. Lynwood A. Johnson 894-2320

Simulation Advisor at Georgia Tech:

Dr. Gayden Thompson 894-2365

# TABLE OF CONTENTS

| I.                | INTE   | RODUCTION                   | 1.  |
|-------------------|--------|-----------------------------|-----|
|                   | Α.     | PURPOSE                     | 1.  |
|                   | В.     | BACKGROUND                  | 1.  |
|                   | C.     | PROBLEM STATEMENT           | 7,  |
|                   | D.     | VALUE OF MODEL              | 7.  |
| II.               | MET    | HOD OF APPROACH             | 10. |
|                   | Α.     | INTRODUCTION                | 10. |
|                   | В.     | PLANNING: PHASES AND TASKS  | 12. |
|                   | C.     | MODEL                       | 14. |
|                   | D.     | LIMITATIONS AND ASSUMPTIONS | 18. |
|                   | E.     | PERFORMANCE MEASURES        | 24. |
| III.              | USE    | OF MODEL                    | 26. |
|                   | Α.     | USER'S MANUAL               | 26. |
|                   | В.     | INFORMATION REQUIRED        | 26. |
|                   | C.     | OUTPUT POSSIBLE             | 28. |
| IV.               | REC    | OMMENDATIONS                | 34. |
| APPE              | NDIX A | (STATISTICAL ANALYSIS)      | 36. |
|                   | I.     | INFORMATION REQUIRED        | 36. |
|                   | II.    | TIME STUDIES                | 40. |
| III.  IV.  APPEND | III.   | ANALYSIS OF TIME STUDIES    | 46. |
|                   | IV.    | REFINEMENTS                 | 62. |

| APPENDIX | В | (COMPUTER LIBRARY ROUTINES) | 64. |
|----------|---|-----------------------------|-----|
| I.       |   | IMSLIB                      | 65. |
| II.      |   | MSFLIB                      | 77. |

Ł. ?,

# LIST OF ILLUSTRATIONS

| Figure |                                          | Page  |
|--------|------------------------------------------|-------|
| la.    | Existing Airport Layout Plan             | 2.    |
| 1b.    | The Terminal Area                        | 3.    |
| 2.     | The Mobile Lounge System, Including      | 5.    |
|        | Remote                                   |       |
| 3.     | Original Mobile Lounge Simulation Job    | 12.   |
|        | State Network                            |       |
| 4.     | Elements of a Simulation Design Process  | 14.   |
| 5.     | General System Flowchart                 | 16.   |
| 6.     | General Flowchart for Simulation Program | 18.   |
|        | Showing Most Important Subroutines and   |       |
|        | Order of Processing                      |       |
| 7.     | Mobile Lounge Job States                 | 19.   |
| 8.     | Aircraft Job States                      | 22.   |
| 9.     | Next Event Matrix Processing             | 27.   |
| 10.    | Example Output - 3 Mobile Lounges        | 29.   |
| 11.    | Example Output - 4 Mobile Lounges        | 31.   |
| Table  |                                          | Page  |
| 1.     | Description of Mobile Lounge Job States  | 20-21 |

# LIST OF ILLUSTRATIONS (CONT'D)

| Figure |                                              | Page        |
|--------|----------------------------------------------|-------------|
|        |                                              |             |
| A-1    | Mechanism of Stochastic Subroutine TIME      | 37.         |
| A-2    | Mobile Lounge Time Study Sheet               | 41.         |
| A-3    | Time Study Values (Sheet)                    | 42.         |
| A-4    | Passenger Time Study Values (Sheet)          | 44.         |
| A-5    | Frequency Histogram (JS #2) from Sample Data | 47.         |
| A-6    | Cumulative Probability Distribution (JS#2)   | 47.         |
| A-7    | Frequency Histogram (JS #2)- Output          | 50.         |
| A-8    | Total Load Duration (JS #3)from Sample Data  | 52.         |
| A-9    | Passenger Load Duration (JS #3)              | 54.         |
| A-10   | Linear Regression Plots of Figures A-8, A-9  | 55.         |
| A-11   | Departure Delay at Remote (JS #3)            | 56.         |
| A-12   | Frequency Histogram (JS #3) of Figure        | 58.         |
| A-13   | Frequency Histogram (JS #3) - Output         | 60.         |
| A-14   | Total Load Duration (JS #3) - Output         | 61.         |
| Table  |                                              | <u>Page</u> |
| A-1    | Mobile Lounge Job State System Descriptions  | 43.         |

### I. INTRODUCTION

### A. PURPOSE

In response to the interest expressed by EAL, their increased operational activities, and their renewed customer service efforts, we have undertaken a rigorous analysis of the Mobile Lounge System at Atlanta Hartsfield International Airport. This increasingly more complex interactive system has rendered the present scheduling methods less effective and the need for a better management tool has arisen. Therefore, we have designed and developed a computer simulation model that will aid in achieving better feasible solutions.

Our primary objective in simulating Eastern Airline's Mobile

Lounge System is two-fold:

- 1. Create a flexible and well documented model
  that will determine the immediate scheduling
  requirements of the system.
- Utilize this model to determine the equipment required to maintain an adequate and desirable service level in the system.

### B. BACKGROUND

### l. History

Before May 1, 1976, Eastern Airline's Mobile Lounge System at Atlanta Hartsfield International Airport (Figures 1a, 1b) con-



EXISTING AIRPORT LAYOUT PLAN

sisted of two active mobile lounges and one reserve mobile lounge, ferrying passengers to and from a remote terminal (Figure 2) into which aircraft implaned and deplaned. This remote terminal consists of ten aircraft pads, three of which handle daily scheduled flights, while the rest were utilized as the need arose.

On May 1, 1976, thirty-two flights were added, bringing

Eastern Airline's daily scheduled flights to a total of two hundred and

forty (240 arrivals and 240 departures). A permanent addition of ten

scheduled flights occurred on December 8, 1976, continuing their pro
gressive domination and expansion in the Atlanta market before they

relocate to the new midfield terminal (presently under construction) in

1981.

#### 2. Problem Areas

On site investigation has turned up the following list of major problem areas that affect the outcome of any decision regarding the Mobile Lounge System.

- a. Presently, there are no guidelines other than experience for augmenting the Mobile Lounge System, which has not had any physical improvement since its inception in 1971.
- b. The increase in passengers and flights affecting the Mobile Lounge System are difficult, if not impossible, to reliably predict.



- c. Flight scheduling is presently based on two operating mobile lounges as a direct result of their frequent breakdowns.
- d. There are five positions for mobile lounges at

  Gate 1, only three of which are accessible due to interference caused

  by the International Arrivals Building (which houses Customs, Immigration, and Plant Quarantine Service processing of EAL's international

  passengers entering through remote).
- e. Additional interference is caused by the deplaning of passengers at the IAB, and by the arrivals and departures of L-1011 aircraft at Gate 2 (adjoining Gate 1), which effectively block passage of mobile lounges.
- f. No standards are available on the service level of the mobile lounge in this system.
- g. The order lead time for a mobile lounge is at least eight (8) months (since they are custom made), and the present estimated cost per unit is half a million dollars (\$500,000).

### C. PROBLEM STATEMENT

Provide a flexible and well documented tool that will determine the impact on the operational characteristics of the Mobile Lounge System, using these primary variables:

- 1. Number of Passengers
- 2. Arrival and Departure Times
- 3. Number of Mobile Lounges

That is, given a predetermined number of passengers, what is the minimum acceptable level of separation between arrivals and/or departures, and what should the effective number of mobile lounges be in order to support the operation and provide adequate customer service?

D. VALUE OF MODEL

### 1. Application

Application of the model will enable the user to systematically examine critical factors that affect the operation of the Mobile Lounge System, such as scheduling, system utilization, and capital improvement alternatives.

This model is designed primarily for use at the Atlanta

Hartsfield International Airport, although it can be readily applied with

some alterations at any other station utilizing a similar transportation

system.

# 2. Flexibility of Application

The flexibility of our model is demonstrated by the major alternatives it can examine to provide an acceptable level of service,

determined by the variable equipment and schedule requirements which are outlined below:

- a. Extra mobile lounge only
- b. Extra mobile lounge requiring partial or complete removal of the International Arrivals Building
- c. Fixed mobile lounges vs. variable aircraft schedule
- d. Variable mobile lounges vs. fixed aircraft schedule
- e. Fixed aircraft types vs. variable aircraft types
- f. Fixed load factors vs. variable load factors
- g. Alternate mobile lounge routes
- h. Combination of the above
- i. What point in time for any alternative?
- j. Do nothing

#### 3. Benefits

Primary benefits in the application of our model will be:

- a. Improved scheduling ... from being able to better predict the impact on the operation of the system due to changing non-deterministic conditions inputed by the user, as opposed to subjective estimates based on past experience utilizing less effective methods.
- b. Improved customer satisfaction ... due to less passenger delays as a direct result of improved scheduling.
- c. Improved decision making involving capital improvements ... as a direct result of an objective analysis of the elements of the system,

their utilization, and their effective projected operation under simulated conditions of growth.

- d. Reduction in operating cost ... by implementation of corrective measures generated in advance by the simulation model.
- e. Convenience to the user ... from better information and ease of application resulting in less man hours spent in scheduling.
- f. Competitive advantage ... due to better decision making policies.

### II. METHOD OF APPROACH

### A. INTRODUCTION

In this section we will discuss our method of approach, including our reasons for selecting the technique utilized, the assumptions and constraints imposed by the nature of the problem, and the advantages, disadvantages, and limitations of our technique.

### 1. Why simulation?

The subjective analysis of various techniques, and their pros and cons regarding validity and feasibility of application, allowed for the acceptance of the simulation approach as a viable alternative with the following advantages and disadvantages:

### a. Advantages

- i. Provides a simpler method of solution to
  large complex systems, such as EAL's Mobile
  Lounge System, as other analytical methods
  are extremely complex and arduous in their
  mathematical formulation.
- ii. Allows us to test out the operational feasibility
  and effectiveness of a complex system by varying
  input parameters, reflecting changing conditions
  and demands.
- iii. Sensitivity analysis can be performed to predict
  the impact of various decisions before their
  actual implementation.

iv. In conjunction with financial analysis, we can estimate the economic feasibility of large complex service systems with long time frames.

# b. Disadvantages

- Inherent risk of oversimplification of the model
   utilized, resulting in possibly infeasible solutions.
- ii. Development of a good simulation model is often expensive and time consuming.

# 2. Why did we reject other methods?

Two other methods that had some applicability were considered and rejected for the reasons outlined below:

- a. Queueing Theory Approach Several aspects of the Mobile Lounge System such as the stochastic arrival and departure of aircraft and the customer service requirements indicated that queueing theory was applicable. Since it gave the analyst more effective information, the queueing model seemed to be desirable, but the complexity of the mathematical formulation of the system, and the otherwise selective piecemeal use of the model rendered its use either impractical or infeasible.
- b. Network Theory Approach During the initial stages of analysis, a network theory approach was considered, as the extensive activities in the model envisioned at the time (Figure 3) could be simulated through the use of GERT (Graphical Evaluation Review Technique). The probabilistic nature of the occurence of arcs and nodes depicting interference



and the random decision making elements of the mobile lounge driver, in combination with a shortest path algorithm, were the prime features of this approach. Further analysis and consultation with EAL management drastically simplified our model while still meeting the problem solving requirements, rendering this network approach unnecessary.

### B. PLANNING: PHASES AND TASKS

In fulfilling the requirements of the problem at hand, we organized the design project into five phases in order to facilitate our analysis.

- 1. Definition Onsite inspections and numerous discussions with involved personnel enabled us to identify and determine the causes of problems in the operation of the Mobile Lounge System.
- 2. Investigation Preliminary analysis of the Mobile Lounge

  System enabled us to determine the information and data requirements

  for the simulation model. Substantial data was collected to familiarize

  ourselves with the operational characteristics of the system. This

  information let to the model formulation, as well as the statistical analysis

  required for the development of a pertinent model.
- 3. Synthesis Preliminary analysis enabled us to conceptualize solution approaches and the structure of alternatives, resulting in our selection of the next event simulation model as the most feasible and applicable technique.
- 4. Design Having selected the appropriate technique that will achieve our objectives, we introduced realism into the deterministic model by utilizing a stochastic simulation process. Our design process is summarized in Figure 4.
  - 5. Implementation The creation of a User's Manual facilitating



Figure 4.

the use of the simulation program, and the successful completion of our project in meeting the required objectives will serve as guidelines for effective scheduling and possible procurement of another mobile lounge.

As a direct result, future policy decisions beyond the scope of this project can be evaluated.

### C. MODEL

A description of the model in question is summarized on the following pages. Our general system flowchart (Figure 5) details the primary activities in the system that incorporates reality in our simulation. Some fixed (a noticeable amount of variability presently exists) pertinent policies and practices incorporated into our model include the following:

- 1. Dispatch of two mobile lounges for variable passenger loads
  (i.e., when seventy or greater), where one begins loading twenty minutes
  prior to the scheduled departure time (T-20), and the other at five minutes
  prior to scheduled departure time (T-5).
- 2. If mobile lounge is unavailable at T-20 with a flight carrying seventy or more passengers, the dispatcher waits until T-2 before a decision is made to utilize only one mobile lounge for transport.
- 3. The same mobile lounge will be utilized for both trips to a particular aircraft when seventy or more passengers are expected.
- 4. A mobile lounge will be considered available for the dispatcher's use when:
  - a. Mobile lounge is empty and functional at Gate 1 or Remote.
  - b. The sum of the passengers just unloaded from an incoming

# GENERAL FLOW CHART

# Sequence of Events



Figure 5.

flight and from another prospective passenger load already awaiting transport into the terminal does not exceed one hundred.

- c. International flights are excluded from condition b.
- 5. International flights will be served by only one mobile lounge.
- 6. When a mobile lounge transporting passengers breaks down, another mobile lounge, when available, takes these passengers to their appropriate destination.
  - 7. Two mobile lounges will not service one aircraft.

The general system flowchart and its activities are processed in our simulation program utilizing the schemesshown in Figure 6 (General Flow Chart For Simulation Program Showing Most Important Subroutines And Order Of Processing), Figure 7 (Mobile Lounge Job States), Table 1 (Description Of Mobile Lounge System Job States), and Figure 8 (Aircraft Job States).

### D. LIMITATIONS AND ASSUMPTIONS

As with any simulation model, there are certain limitations and assumptions that need to be understood before any decision is made to utilize the results.

- 1. Since people are an integral part of the system, the so-called "Hawthorne Effect" may affect the results of our data collection i.e., the fact that mobile lounge drivers are being observed may modify their behaviour.
- 2. Simulation is not absolutely precise, and we cannot measure the degree of imprecision. Analysis of the sensitivity of the model to changing parameter values can only partially overcome this difficulty.
- 3. Simulation results are usually numerical, hence, the danger of attributing a greater degree of validity to the numbers than is justified

# GENERAL FLOW CHART FOR SIMULATION PROGRAM SHOWING MOST IMPORTANT SUBROUTINES AND ORDER OF PROCESSING



Figure 6.



# MOEILE LOUNGE JOB STATES



Figure 7

# TABLE 1.

# DESCRIPTION OF MOBILE LOUNGE JOB STATES

| Job S<br>Numl |   | Description                                                          |
|---------------|---|----------------------------------------------------------------------|
| 1             |   | Load Mobile Lounge at Gate 1.                                        |
| 2             |   | Mobile Lounge travels to plane.                                      |
| 3             |   | Load Plane.                                                          |
| 4             |   | Mobile Lounge returns empty to Gate 1.                               |
| 5             |   | Mobile Lounge travels between planes.                                |
| 6             |   | Mobile Lounge travels empty to<br>Remote area to pick up passengers. |
| 7             |   | Unload plane.                                                        |
| 8             |   | Mobile Lounge returns with passengers to Gate 1.                     |
| 9             |   | Unload Mobile Lounge at Gate 1.                                      |
| 10            |   | Mobile Lounge returns from an international flight.                  |
| 11            |   | Unload Mobile Lounge at IAB.                                         |
| 12            |   | Mobile Lounge returns to Gate 1 from IAB.                            |
| 13            |   | Mobile Lounge idle at Gate 1.                                        |
| 14            | • | Mobile Lounge breakdown occurs.                                      |
| 15            |   | Unload passengers from breakdown                                     |

-21-

TABLE 1 (Cont'd)

| τ | \$ .* | 16 | Mobile Lounge waits for departure (passengers ≤ 70) |
|---|-------|----|-----------------------------------------------------|
|   |       | 17 | Mobile Lounge waits for arrival at Remote           |
|   |       | 19 | Travel to breakdown Mobile Lounge                   |

# AIRCRAFT JOB STATES

- 18. Aircraft ground time.
- 20. Aircraft ready for unloading.
- 21. Taxi time (in transit between ON and IN time).



Figure 8.

arises.

- 4. The simulation model is primarily based on the normal day-to-day activities of the Mobile Lounge System. Exceptions and anomalies are not included, and are left to the user to provide, i.e., charter flights, aircraft breakdowns (flight returns), etc.
- 5. Our model reflects the operation of the Mobile Lounge System as it exists today.
- 6. Other complex decisions made by the dispatcher, ramp service manager, and the operations manager are not reflected in our model due to the difficulty in modeling rational human behaviour.
- 7. Time study data will incorporate the effects of any possible delays into our model, whether dependent or independent from other activities in the system, such as interference.
- 8. The simulation must be allowed to achieve steady state, that is, enough data must be generated to reduce "sample error" and provide adequate and confident results. In our model, a simulation run of one week is sufficient.

In essence, our simulation model uses only the critical elements necessary to perform in a relatively objective manner and at the same time provide results that upon analysis will enable the user to make appropriate and effective decisions and recommendations.

### E. PERFORMANCE MEASURES

In the analysis of each alternative and the use of the stochastic

elements in our simulation model of Eastern Airline's Mobile Lounge

System, one can assign a fixed or variable penalty cost to our criteria

for evaluating performance measures: passenger delay minutes. For

our purposes, we have divided the major causes of delay into two

categories, mobile lounge delays and flight delays, the duration of which

can be incorporated into the time elements of our model.

# 1. Mobile Lounge delays

### a. Travel time

- i. Passenger inplane/deplane at Remote.
- ii. Passenger inplane/deplane at Gate 1.
- iii. Interference.
- iv. Aircraft position at Remote.
- v. Breakdown time (recoverability).

# b. Schedule changes

- i. Early arrival
- ii. Late arrival

# 2. Flight delays

### a. Arrival deviations

- i. Stacking (ATC delays).
- ii. Arrival time.
- iii. Unscheduled aircraft arrivals.

### b. Departure deviations

- i. Service time.
- ii. Late arrival.
- iii. Departure time

iv. Aircraft maintenance at Remote.

### III. USE OF MODEL

### A. USER'S MANUAL

Our simulation program is characterized by special procedures or techniques which enable the user to monitor the process (Figure 9) and to incorporate changing conditions in the Mobile Lounge System for management problem solving. In order to facilitate the understanding of the simulation procedure shown in Figure 6, and for purposes of training and instruction, we have developed a User's Manual which is attached directly to the simulation program for easy reference (see attached printout). In conjunction with the User's Manual, our program package and documentation is frought with explicit comment cards depicting the "English Version" of the FORTRAN used.

### B. INFORMATION REQUIRED

Our simulation model requires the use of several important time distributions necessary to maintain the validity of its results. These distributions and some others outlined below greatly enhance the realism of our simulation model. Refer to Appendices A and B for further information.

### 1. Aircraft Data

- a. Scheduled arrival distribution
- b. Scheduled departure distribution
- c. Unscheduled arrival distribution
- d. Unscheduled departure distribution

### 2. Passenger data

- a. Quantity of arrivals distribution
- b. Quantity of departures distribution

|                                | 1                 |                                                                                 |                                               |                            |      |            |                                              |                                                                          |                                                                                  |
|--------------------------------|-------------------|---------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|------|------------|----------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| COLUMN                         | 0<br>0<br>6 5F6   |                                                                                 |                                               |                            |      |            | 50<br>55<br>55                               |                                                                          |                                                                                  |
| 3-174N CO                      | 1283<br>123<br>14 | u 0050                                                                          |                                               |                            |      |            | 1200<br>1220<br>132                          |                                                                          |                                                                                  |
| cougen co                      | 1 1               | FF<br>42<br>44<br>540550                                                        |                                               |                            |      | J          |                                              | 30<br>24<br>44<br>72<br>1-4                                              |                                                                                  |
| ירחגי כיזרחגא פסרחאי בפרחשי פי | 300<br>120<br>13  |                                                                                 |                                               |                            |      | CB STATE = | H 4 20 0                                     |                                                                          |                                                                                  |
| NEGICE                         | 163               | 0 0000 .                                                                        | 433<br>110<br>10000                           |                            |      | DOESENT JU | 2007<br>1007<br>1007                         | 0 0000<br>214                                                            | An<br>miroso                                                                     |
| CULUYN                         | 102               | פספנ מל                                                                         | 944<br>244<br>2446000                         |                            |      |            | 102<br>102<br>1                              |                                                                          | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |
| 1.3                            | 101               | 2 J<br>C 2000                                                                   | 070000<br>14<br>21<br>21                      |                            |      | 954 = 152  |                                              | 20<br>57<br>14<br>14<br>15<br>25<br>25<br>26                             | 24<br>24<br>25<br>26<br>20                                                       |
| CCLUMR C                       | O                 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 1-8<br>477<br>700<br>700<br>700               | M. 3 -                     | 121  | Jea wowa   | (1)                                          | 17.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10 | XXX<br>XXX<br>VXOD 1204                                                          |
| C31.18                         | 5 £ £             | 72<br>73:20:00                                                                  | 470<br>470<br>722<br>720<br>720<br>720<br>720 | 2 78                       | 12.0 |            | 3 50 0                                       | TAN AND O                                                                | PLAS<br>1001<br>1201<br>1200<br>1200                                             |
| כסרותא כסרות                   | 230               | 2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                         | 0 = F C &                                     | ı<br>T                     | 122  | 10         | 500<br>N                                     | > 2.0000<br>4.1                                                          | 50.63                                                                            |
|                                | F. C.             |                                                                                 | 40<br>40<br>34<br>40                          |                            |      | TEL IN NE  | 1 1 1<br>10 1 1<br>2 1 17<br>14 10<br>2 1 13 | 2 5 5000                                                                 | 10 3 L                                                                           |
|                                | NUCS THE ALL III  | N 0 4                                                                           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2         | 11 E LOUVIGE<br>17 T T E S |      | UMN SELEC  | 00 00 00 00 00 00 00 00 00 00 00 00 00       | 25                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                            |
| ACM<br>Com                     | C C I             |                                                                                 | 3,2                                           | 74<br>00                   |      | 100        | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8        |                                                                          | ,                                                                                |

Figure 9

### 3. Maintenance data

- a. Mobile lounge
  - i. Breakdown frequency
  - ii. Maintenance duration distribution
- b. Aircraft
  - i. Breakdown frequency
  - ii. Maintenance duration distribution

# 4. Delay data

- a. Pushout delay
  - i. Frequency
  - ii. Duration
- b. Other (i. e., customs agent and mobile lounge driver inavailability)
  - i. Frequency
  - ii. Duration
- c. Taxi time distribution

The user is reminded here of the need to determine when another distribution is required to improve the simulation results, and of the cost incurred in developing the new distribution.

# C. OUTPUT POSSIBLE

All output will include titles and descriptions in a format for all input/output data. Refer to Figure 10 (Example output - 3 mobile lounges) and to Figure 11 (Example output - 4 mobile lounges), and also to the attached computer printouts for more detail.

|                 | *                               |                          | •                                      |                                           |                 |                 |                   |                       |                      |        |        |                 |                 |             |                                                                     |             |
|-----------------|---------------------------------|--------------------------|----------------------------------------|-------------------------------------------|-----------------|-----------------|-------------------|-----------------------|----------------------|--------|--------|-----------------|-----------------|-------------|---------------------------------------------------------------------|-------------|
| <u>م ا :</u>    |                                 |                          |                                        | อบเ                                       | PUT FOR         | тне мов         | ILE LOUN          | GES                   |                      |        |        |                 |                 |             | ٠                                                                   | . •         |
| <u> </u>        | MORTLE LE                       | OUNGE FI                 | LISHIS SERVI                           | CEB                                       | TOTAL T         | IME SPEN        | T IN EAC          | ч J03 <sub>4</sub> ST | ATE 5                | 6      | 7      | <u>-</u>        |                 |             |                                                                     |             |
|                 | 131                             |                          |                                        |                                           | 1935            | 2430            | 4005              | 1520                  | 133                  | 1525   | 1410   | 925             |                 |             | And the same street, and the same same same same same same same sam |             |
|                 | 102                             |                          |                                        | -<br>[4                                   | 1299            | 1620            | 2670              | 950                   | 133                  | 2135   | 1383   | 1255            |                 | <del></del> | <del></del>                                                         |             |
|                 | 133                             |                          | 1                                      | 12                                        | 1505            | 1890            | 3115              | 950                   | 266                  | 1220   | 1413   | 740             | •               |             |                                                                     |             |
| ***             | TOTAL TIME                      | =                        |                                        |                                           | 4733            | 5940            | 9793              | 3420                  | 532                  | 4880   | 4700   | 2900            |                 |             |                                                                     |             |
|                 | AVERAGE T                       | IXE<br>                  |                                        |                                           | 248.95          | 312.63          | 515.26            | 213.75                | 133.00               | 305.00 | 235.00 | 185.00          |                 |             |                                                                     | _           |
| -               |                                 | •                        | · · · · · · · · · · · · · · · · · · ·  | ·                                         | ova, tr         | ม้อ เชื้อไม่ที  | TH SACH           | IOD STA               | r C                  | ·····  |        |                 |                 |             |                                                                     |             |
|                 |                                 | _                        | 9                                      | 10                                        | 11              | 12              | 13                | J08 STA<br>14         | 15                   | 16     | 17     | 19              |                 |             |                                                                     |             |
|                 | 101                             |                          | 300                                    | 144                                       | 165             | 174             | 35157             | 0                     | J                    | 4500   | 117    | ō               |                 |             |                                                                     |             |
|                 | 102                             |                          | 420_                                   | 144_                                      | 155             | 174             | 38229             | 0                     | ·0                   | 5,400  | 0      |                 | *.              |             |                                                                     |             |
|                 | 193                             |                          | 24 û                                   | 285                                       | 330             | 348             | 37281             | G                     | J                    | 4500   | 77     | 0               |                 |             |                                                                     |             |
| <del>,</del> ,, | TOTAL TIME                      | Ē                        | 950                                    | 576                                       | 650             | 696             | 110667            |                       |                      | 14400  | 194    | G               | •               |             |                                                                     |             |
| -               | AVERAGE TO                      | IME                      | 60.00                                  | 144.00                                    | 165.00          | 174.00          | 3353.55           | 0.00                  | 0.00                 | 980.00 | 97.00  | 0.00            |                 |             |                                                                     |             |
|                 |                                 |                          | •                                      |                                           |                 |                 |                   |                       |                      |        |        |                 |                 |             | •                                                                   |             |
| <del></del>     | FLIGHT                          | MOBILE                   | PASSENGE<br>START                      | R TIME                                    |                 | TOTAL<br>FOR FA | TIME SP           | ENT IN E              | ACH JOB              | STATE  | ,      |                 |                 |             | · .                                                                 |             |
|                 | ภิลัยัน                         |                          | ~                                      |                                           |                 |                 |                   | 3                     |                      |        | _5     | 6               |                 |             |                                                                     | <del></del> |
|                 |                                 |                          |                                        |                                           |                 |                 |                   |                       |                      |        |        |                 |                 |             |                                                                     |             |
| ~               | 194<br>195<br>106               | 101<br>132<br>103        | 30525<br>30525<br>34200                | 31005<br>31063<br>35130<br>35350<br>35925 | 2               | 0<br>0<br>15    | 0<br>3<br>_270    | 0<br>0<br>445         | 0<br>0<br>191<br>381 |        | 0<br>0 | 305<br>305<br>0 | 235<br>235<br>0 |             |                                                                     |             |
| <del></del> ر   | 107<br>108<br>109               | 131<br>182<br>133        | 33300<br>35445<br>35745                | 20507                                     |                 | 3 u<br>0<br>0   | 5 40<br>9<br>0    | 930<br>830            | 0<br>0               |        | 0      | 305<br>305      | 235<br>235      |             |                                                                     | ,           |
| ``              | 11 0<br>11 1<br>11 2            | 132<br>133<br>101        | 39308<br>39503<br>39335                | 40230<br>405365<br>40730                  | 2               | 15<br>15<br>0   | 270<br>270<br>0   | 445<br>445            | 190<br>190<br>190    |        | 0      | 3<br>305        | 0<br>0<br>235   |             | *                                                                   |             |
|                 | 112<br>113<br>114               | 101<br>192<br>193<br>101 | 43590<br>43535<br>43535                | 44730<br>49485<br>50025<br>54270          | - <del></del> 2 | 15<br>0         | 270<br>0<br>      | Q                     | 19j                  |        | 0 .    | 305<br>305      | · 235<br>235    |             |                                                                     |             |
| υ,              | 115<br>116                      | 161                      | 4 454 5<br>5 3 3 4 0                   | 54270                                     | 2               | 15              | 270               | 445                   | 132                  |        | ŏ      | ั้ง             | ζÓ              |             | •                                                                   | •           |
| 5 11            | 117                             | 102                      | 54000<br>53745                         | 54939<br>54225<br>55959                   | 2               | 15              | 270               | 445                   | 19]                  |        | 0      | 30 <del>2</del> | 235             |             | •                                                                   | : :         |
|                 | 129                             | 7 -1 7                   | ###################################### | 55454<br>58433<br>59730                   | 2               | 0 —<br>15       | 270<br>270<br>270 | G<br>445              | 190<br>190           |        | .0     | .305            | 235             |             |                                                                     | -           |
| ر<br>           | 120<br>122<br>122<br>123<br>124 | 192<br>103<br>181<br>132 | 501.5                                  | 54955<br>59805                            |                 | ^ó              |                   | 0                     |                      |        | . ŭ    | 305<br>305      | 235<br>         |             |                                                                     |             |
|                 | 124<br>125<br>125               | 101                      | 5 3355<br>6 3 4 3 3<br>6 3 4 3 3       | 59165<br>63930                            | 2               | 0<br>15         | 270<br>270        | 445                   | 0                    |        | 0      | 305<br>0<br>a   | 0               |             |                                                                     |             |
|                 | 125                             | 1 13                     | たんし じ                                  | A4150                                     | *               | 3 1             | 540               | 8 न ग                 | 1 9 ปั               |        | u      | u u             | G               |             |                                                                     |             |

- 1. Input Data
  - a. Predetermined aircraft schedules
  - b. All initial matrices
  - c. Other input variables and parameters:
    - i. Load factors
    - ii. Types of aircraft
    - iii. Number of mobile lounges
    - iv. Stochastic distribution parameters
    - v. Other
- Basic Values and Parameters Calculated by Program Before Processing Begins.
  - a. Random number generator and expected values
  - b. Stochastic distributions' expected values
  - c. Basic parameter values
  - d. Other
- 3. Printout to Verify Processing of Data
  - a. Next Event Matrix and Unit Matrix (periodically)
  - b. Other
- 4. Output Statistics
  - a. Summary of job duration in each job state for different jobs.
  - b. Percent of total job time spent in each job state
    - i. Average figures for all jobs
    - ii. Specific figures for the maximum job
    - iii. Delay figures for each job
  - c. Frequency distributions on delay minutes per time of day

| (1) AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /ERAGE IS                  | INC CETUSHOO<br>SE BOL YNA E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y OVER                                                                          | THOSE JOB         | ş THA,T.         | USEO TH                   | 1 ] E.         | <del></del>     |                 |                |                |                                       | <br>······································ |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|------------------|---------------------------|----------------|-----------------|-----------------|----------------|----------------|---------------------------------------|--------------------------------------------|----------------------------------------|
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Ir.                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - <u> </u>                                                                      | , J               | •                |                           |                |                 |                 |                | •              |                                       |                                            | *********                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                   |                  |                           |                |                 |                 |                |                |                                       | <br>                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Company of Conductor & A. St. of St. M. Anniel St. May 1988, April 1988, No. 2, 1988.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t are are one organized and delicated                                           |                   |                  |                           |                |                 |                 |                |                |                                       | <br>                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                               |                   |                  | · <del></del>             |                |                 |                 | ·····          |                |                                       | <br>                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                   |                  |                           |                |                 |                 |                |                |                                       |                                            | -                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OUT                                                                             | PUT FOR T         | HE MORI          | LE LOUNG                  | 558            |                 |                 |                | ;              |                                       |                                            |                                        |
| J SJISON<br>SERUK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OUNGE<br>ER FL             | NUMBER OF<br>IGHTS SERVIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CED                                                                             | TOTAL TIP         | E SPENT          | IN EACH                   | H JOB STAT     | re<br>s         | 6               | 7              | 8              |                                       |                                            |                                        |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                               | 1290              | 1620             | 2670                      | 1140           | 0               | 1830            | 1410           | 1110           |                                       |                                            | ************************************** |
| 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | 360               | 1086             | 1789                      | 760            | a               | 1830            | 1410           | 555            | · · · · · · · · · · · · · · · · · · · | <br>                                       |                                        |
| 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                               | 1075              | 1350             | 2225                      | 950 .          | 3               | 1525            | 1175           | 925            |                                       |                                            |                                        |
| 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                               | 1505              | 1690             | 3115                      | 1330           | 0               | 915             | 765            | 370            |                                       | <br>                                       |                                        |
| TOTAL TIME<br>AVERAGE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del>                                                                    | 4730<br>248.95173 | 5940<br>12.63    | 9790<br>515.25            | 4180<br>220.00 |                 | 6100<br>        | 4700<br>235.00 | 2960<br>185.00 |                                       |                                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                   |                  |                           |                |                 |                 |                |                |                                       | <br>                                       |                                        |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                              | OTAL TIME         | SPENT<br>12      | IN EACH                   | JOB STATE      | 15_             | 15              | 17             | 19             | •                                     | <br>                                       |                                        |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                          | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                               |                   | 0_               | 39410                     | 0              |                 | 3.600           | 0_             | Q_             |                                       | <br>                                       | ***                                    |
| . 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 432                                                                             | 495               | 522              | 43001                     | 0              | Đ               | 3600            | 0              | G              |                                       |                                            |                                        |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                   | 174              |                           | •              | ე               | 2700.<br>4500   | 0_<br>C        | <u>0_</u><br>0 |                                       | <br>                                       |                                        |
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144                                                                             | 155               |                  |                           | 0              | ,<br>           |                 |                | U              |                                       |                                            |                                        |
| TOTAL TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 950<br>60 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 | 660<br>165.00     |                  | 156118                    | 0 .00          | 0 - 02          | 14400<br>900.00 | 0.00           | u<br>0 • 0     |                                       |                                            |                                        |
| A456405 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | 157.00            | 174.00           |                           |                | 5400            |                 |                |                |                                       | <br>                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                   |                  |                           |                | ·               | <u> </u>        |                |                |                                       | <br>                                       |                                        |
| FLIGHT<br>JGS<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FORMSE                     | PASSENGE!<br>START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R TIME<br>END                                                                   | 1                 | TOTAL<br>FOR EAC | TIME SPA<br>H FLIGHI<br>2 | ENT IN EAC     | 2 80L H;<br>↓   | TATE            | 5              | 6              | 7                                     |                                            |                                        |
| The second secon |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | AT V APV LIMIT    |                  |                           |                |                 | -               |                |                |                                       |                                            |                                        |
| 105<br>176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101                        | 30525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31005                                                                           |                   |                  |                           | <u> </u>       |                 |                 | 9              | 305<br>305     | 235                                   | <br>                                       |                                        |
| 176<br>177<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101<br>102<br>103<br>104   | 34200<br>34200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31669<br>35136<br>35356                                                         | 215<br>430        |                  | 270<br>540                |                | 190<br>380      |                 | ე<br>0<br>     |                | <u> </u>                              | <br>                                       |                                        |
| 139<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101<br>102<br>103          | 35-+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35925<br>35289                                                                  | 0                 |                  | 0<br>1                    | 3              | ე<br>3          |                 | o<br>v         | 305<br>305     | 235<br>235                            |                                            |                                        |
| 1112<br>112<br>113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1)4<br>101                 | 50,000 mm, | 335355<br>355365<br>355365<br>355366<br>355366<br>35566<br>35666<br>3444<br>344 | 215               |                  | 270<br>270<br>0           | 4 4 5<br>0     | 190<br>190<br>0 |                 | 0              | 0<br>305       | 235                                   |                                            | ٠                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | _                 |                  | -                         |                | Ť               |                 |                |                |                                       | <br>****                                   | -                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4031FE                     | PASSENGER SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cล้ะื่อการอ                                                                     | ACTUAL<br>TIME    | 0£1              | . AY I                    | NUMBER<br>OF   |                 |                 | •              |                |                                       |                                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOBILE<br>LOUNGE<br>HUMBER | 1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _) 142                                                                          | TIME              | FLIC             | HT PAS                    | SSENGERS-      |                 |                 |                | ****           | <del></del>                           | <br>,                                      |                                        |
| عسيسير والسرواة المستولوسات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | 0<br>             |                  | 9                         | - 100          |                 |                 |                |                |                                       | <br>                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115                        | 430<br>544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31020<br>31020<br>31020                                                         | 31005<br>31243    | 3                | 15                        | 100            |                 |                 |                |                |                                       |                                            |                                        |

- d. Frequency distributions on time required to complete jobs
- e. Detailed output for each mobile lounge
  - i. Number of jobs completed
  - ii. Mean job time
  - iii. Mean delay minutes
  - iv. Mean job time per time period
  - v. Mean delay minutes per time period
  - vi. Maximum job time per time period
  - vii. Maximum delay minutes per time period
  - viii. Total delay minutes per day
- f. Display of percent utilizations for each mobile lounge in the system
- g. Histogram showing demand on system vs. time
- h. Table or listing showing maximum values per time period achieved for ...
  - i. Aircraft type(s) and load factor(s) being processed at one time
  - ii. Number of jobs being processed at one time
  - iii. Number of flights being delayed at one time
  - iv. Number of passengers being delayed at one time
  - v. Number of mobile lounges in use at one time
- 5. Feasibility Output
  - a. Fixed costs of passenger delay minutes

- b. Variable costs of passenger delay minutes
- c. Total system delay costs, projected annually
- d. Utilization figures
- e. Average job cycle times per time period
- f. Maximum service level
  - i. Limits on flights in
  - ii. Limits on passengers
  - iii. Limits on schedule changes effects
  - iv. Service graphs vs. delay costs per day
  - v. Service graphs vs. passengers per day
  - vi. Service graphs vs. aircraft per day
- 6. Other

# IV. RECOMMENDATIONS

In order to maintain our simulation model relevant with the current operation of the Mobile Lounge System, certain areas need to be systematically upgraded. These refinements are necessary to enhance the confidence in, and the validity of, the results for use in the management decision making process. Further discussion on this subject can be found in Appendix A, Section IV.

In order to justify schedule changes or capital improvements in the Mobile Lounge System, the following should be developed before a decision is made:

- 1. Establish different cost structures under which passenger delay minute costs may be determined.
- 2. Establish a standard of service level in order to quantify the true cost of passenger delay minutes.
- 3. Comparison of actual performance and costs with simulated performance and costs.
- a. Comparison of service levels measured in passenger delay minutes.
- b. The costs of delay minutes should be weighted differently for arrivals and departures.
- c. Comparison of costs of proposed improvement and new service level with the present costs, incurred over time.
- 4. Accurate assessment of the costs of operating the Mobile

  Lounge System (including maintenance) and the cost and policy implications

  of any proposed alternative.

- 5. Determine the impact of various dispatching and utilization policies to establish and maintain the best, feasible and uniform set of policies and standards for the operation of the Mobile Lounge System.
- 6. Test the impact of a variable aircraft schedule to determine optimum separation of flights, in order to even out or reduce the demand on the Mobile Lounge System at any given time.
- 7. Repeat the above with various capital improvement alternatives to determine the best tradeoff between improved customer service, reduced operating costs, and utilization of the investment involved.
- 8. Utilize the services of the members of our design project team when implementing the simulation program into your General Electric computer.
- 9. Utilize knowledgeable and experienced information and computer services personnel when initially installing the simulation program.

# APPENDIX A

# STATISTICAL ANALYSIS

# I. INFORMATION REQUIRED

Certain events in our model which in nature have varying time and frequency conditions, will be processed through a stochastic sub-routine simulating reality. These time and frequency distributions can be developed from time studies and other recorded data, because (a) the use of raw empirical data implies that all one is doing is simulating the past, (b) it is generally more efficient of computer time and storage requirements to use a calculated probability distribution, and (c) it is much easier to change the parameters of the probability distribution to perform sensitivity analysis. Refer to Figure A-1 for an outline of the mechanism involved in the stochastic subroutine.

As indicated previously, certain time study data and other recorded information will be required to process events throughout our stochastic simulation model. These are:

A. Gate 1 - Formulation of a time function and distribution incorporating passenger loading/ unloading times and dispatching delays at Gate 1 in this general format:

$$Gl(i) = f(P)_i + \Delta_i --$$

Where: - f(P)<sub>i</sub> is a time function of the passenger loading/unloading times at Gate 1



MECHANISM OF STOCHASTIC SUBROUTINE

- ∆; is a time distribution incorporating dispatching delays at Gate I
- Gl(i) is the total gate time function for departures (i = 1) beginning from T-20 or T-5 when the dispatcher announces the departure of a flight (mobile lounge) or for arrivals (i = 2) which involve only the unloading of passengers from a mobile lounge (job states 1 and 9 respectively).
- B. Travel Time All our travel times can be generated through cumulative or other approximating travel time distributions and the random number generator, for job states 2, 4, 5, 6, 8, 10 and 12.
- C. Remote Pad Formulation of a time function and distribution incorporating passenger loading/un-loading times and service delays at Remote in this general format:

$$RI(j) = f(P)_j + \Delta_j$$
 --

Where: - f(P); is a time function of the passenger loading and unloading times at Remote.

- $\Delta_j$  is a time distribution incorporating dispatching delays due to activities in Remote.
- RI(j) is the total Remote Pad time function for the duration of loading passengers into aircraft (j = 1) or unloading passengers into mobile lounge (j = 2), for job states 3 and 7, respectively.
- D. IAB Formulation of a time function and distribution incorporating passenger unloading at the IAB and other

delays due to customs inspection of mobile lounge, etc. in this general format, for job state 11:

$$IAB = f(P) + \Delta$$

E. Breakdown - Formulation of a time function and distribution incorporating the duration of mobile lounge breakdown and the transfer time of passengers between mobile lounges, for job states 14 and 15, respectively, in this general format:

$$BK(k) = f(P)_k + \Delta_k --$$

Where: -  $f(P)_k$  is a function of the passenger transfer times between mobile lounges.

- $\bigwedge_k$  is a time distribution of the duration of mobile lounge breakdown time for mobile lounge K
- BK(k) is the total duration of breakdown (k = 1,  $f(P)_k = 0$ , for job state 14) or the total duration of passenger transfer times (K = 2,  $\triangle_k = 0$ , for job state 15)
- F. Arrival/Departure Deviations Formulation of a time function and distribution incorporating time deviations from the scheduled arrival or departure times in this general format:

$$DEV(1) = \Delta_1$$

Where: -  $\Delta_1$  is the deviate generation function that will adjust the scheduled arrival (1 = 0) or departure (1 = 1) times

# II. TIME STUDIES

Through observation and analysis of the Mobile Lounge System, we were able to identify the primary events that were to be incorporated into our model. Therefore, in transforming these primary events into distinguishable elements to facilitate time study data collection and analysis, we tested and developed various forms, resulting in a "Mobile Lounge Time Study Sheet" (Figure A-2).

The ease in recording the various possible outcomes that may occur, demonstrates the flexibility of the "Mobile Lounge Time Study Sheet".

For example, a departure and an international arrival can be recorded in sequence in one column, with adequate slots for flight data information such as flight numbers and number of passengers per flight.

Note also that the numerical index in the margin facilitates analysis when used in conjunction with the "Time Study Values" sheet (Figure A-3), which shows how to calculate the various job state time elements (Table A-1). It is from these time elements that the stochastic distributions will be developed and synthesized. The "Passenger Time Study Values" sheet (Figure A-4) simply isolates any passenger related data into a separate form.

# NOBILE LOUNCE TIME STUDY SHEET

| *************                                    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *************                                                             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kr 化放射效应 化水分放放物                                  | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **************************************                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·            | 攻 ・・・・・・・・・ ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • * • • • * * * * * * * * * * * * * *                                   | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • • • • •                                        | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ************                                                              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| * * * * *                                        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| * * * * * * * * * * * * * * * * * * *            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • ½ • • • • · · · · · · · · · · · · ·                                   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| स्य मेरावेद्य मेराज्ये हिम्माल<br>के             | รู้งางคำหนึ่งเรื่องข้องตัดส่วนสี่จะสี่จะได้เกามส์<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *****************                                                         | anaahaana kanaanaana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| negational state                                 | \$<br>\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * * * * * * * * * * * * * * * * * * *                                     | अक्षयक का का कर कर के का के बार का कर कर है है.<br>हैं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | 京                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • ½ • • • • ½<br>• • ½ • • • • ½<br>• • ½ • • • •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| સાર્જા સંશેષ્ઠિયા વેલ્ટી કરવા છે.<br>કર્યો       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************                                    | લામાં માત્રા કરાયા છે. તે કે જે જે જે તે કરાયા હોય હતા છે. તે કે જે                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ene anarone franc                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * * * * * * * * * * * * * * * * * * *            | 表 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.00000000000000000000000000000000000           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| **************************************           | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **************************************                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·            | 本 ・ ・ ・ ・ ・ ・ ・ ・ ・ * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * * * * * * * * * * * * * * * * * * *            | 名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • * • • • • *                                                           | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 市学校存在查查中设定市市市市 (1)<br>2                                                   | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | 3.       3.       3.       3.       3.       3.       3.       3.       3.       4.       4.       5.       5.       5.       6.       7.       7.       8.       8.       9.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       10.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| xxir victoria incipar in in                      | \$\frac{3}{2}\$<br>\$\frac{3}{2}\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | 医水溶性性结合性 经特别的 医多种性性 医多种性性 医多种性 医多种性 医多种性 医多种性 医多种性 医多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  | TES DISPATCHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | M/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • • • • • • • • • • • • • • • • • • •            | # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABLV.                                                                     | 20 M/30 M/30 M/30 M/30 M/30 M/30 M/30 M/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OPE<br>OPE<br>THE                                | A MANAGEMENT OF A MANAGEMENT O | * * * * * * * * * * * * * * * * * * *                                     | S OF H/L BOARDING BOARDING RS OF H/L S OF H/L LEAVING LEAVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STILY<br>STILY<br>UNE STILY                      | ACES INCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S * S * S * S * S * S * S * S * S * S *                                   | # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KOBILE LOUNGE NO.  FLIGHT NO.  NO. OF PASSENGERS | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SECOND FLIGET NO.  NO. OF PASSENGERS  *********************************** | DRIVER OPENS DOCRS OF M/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOUNGE<br>NO<br>PASSENN<br>K/L PR<br>******      | # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | **************************************                                    | PENSON PE |
| LE L<br>HET N<br>OF P<br>OF E<br>SASSES          | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MATIO # WAIT                                                              | DRIVER OPEN<br>PASSENGERS<br>PASSENGERS<br>DRIVER CLOS<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MOSILE<br>FLIGHT<br>NO. OF<br>NO. OF<br>******   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SECC<br>SECC<br>SECC<br>SECC<br>SECC<br>SECC<br>SECC<br>SECC              | DRIV<br>PASS<br>PASS<br>PASS<br>W***<br>DRIV<br>PASS<br>DRIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 英国財政教会                                           | A THE HE WE HAVE A AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | THEN WE WHAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

THE COLUMN A S

DATE:

TIME

# TIME STUDY VALUES

|           |                   |                  |                  |           | •          |            |           |                  |                  |
|-----------|-------------------|------------------|------------------|-----------|------------|------------|-----------|------------------|------------------|
| Js#       | <u>STATEMENTS</u> | •.               |                  |           |            |            |           | •                |                  |
| 1.        | 5 - 2             |                  |                  | ••••      | ••••       | ••••       |           | <b>3 9 0 0</b>   |                  |
| 2.        | 6 - 5             | o • • • •        |                  | ••••      | ••••       | ••••       |           | ***              |                  |
| 3•        | 8 - 6             | • • • •          | • • • •          |           |            |            |           |                  | • • • • •        |
| 4.        | 9 - 8             |                  |                  |           |            |            | 0 0 0 0   | 0                |                  |
| ! 5·      | (14- 8)-(13-12)   | 0 • • • •        | • • • • •        | 0 • 0 0 0 |            |            |           |                  |                  |
| 6.        | (14-11)-(13-12)   | ••••             | 0.000            |           |            | 0 • • •    |           |                  | <b>0 6</b> 7 3 5 |
| <b>7.</b> | 17 - 14           | • • • •          | 0 + - + -        | ,         | 5· ¢ • • ¢ |            |           | <b>-•••</b>      |                  |
| 8.        | 20 - 17           |                  | * * * * *        | ***       |            | • • • • •  |           | • • • •          |                  |
| 9•        | 21 - 20           | 6 6 6 6 0        |                  | * • • • • | 0 + = 0 0  |            | • • • •   |                  |                  |
| 10.       | 18 - 17           | b • • • •        | 0 • • • 0        |           |            | <b>***</b> |           |                  |                  |
| 11.       | 19 - 18           | 9 • • • •        | 4000             | ••••      | ••••       | 40000      |           | <b>. • • • •</b> | ••••             |
| 12.       | 20 - 19           | 9 • • •          | <b>0 • • • •</b> | ••••      |            | 0 0 0 0    |           |                  | ••••             |
| 16.       | 2 - 1             | Q <b>4 4 •</b> 6 |                  | * • • •   |            | * * * * *  | O • • • • |                  |                  |
| 17.       | 13 - 12           |                  | • • • • •        |           |            |            |           | 0 • • • •        | ••••             |
| DURATI    | ON:               | • • • •          | <b>0 • • • •</b> |           |            | * • • •    |           | <b>* • • • •</b> | ••••             |
| FLIGHT    | NO.:              | ••••             | 0 • • •          | ••••      |            | ••••       | • • • •   | ••••             |                  |
| DATE-S    | HIFT:             | ••••             |                  | • • • •   | ••••       | ••••       | • • • •   | • • • •          | ••••             |

# TABLE A-I

| Job State # | Job State Description                       |
|-------------|---------------------------------------------|
|             |                                             |
| 1.          | Load M/L for departure at Gate 1            |
| 2.          | Travel to departing flight                  |
| 3.          | Unload M/L for departure at Remote          |
| 4.          | Travel empty to Gate 1                      |
| 5.          | Travel between aircraft at Remote           |
| 6.          | Travel to arriving flight                   |
| 7.          | Unload arrival at Remote                    |
| 8.          | Travel loaded to Gate 1                     |
| 9.          | Unload M/L for arrival at Gate 1            |
| 10.         | Travel from Remote to IAB                   |
| 11.         | Unload M/L at IAB                           |
| 12.         | Travel to Gate 1 from IAB                   |
| 13.         | Idle at Gate I                              |
| 14.         | M/L breakdown                               |
| 15.         | Unload disabled $\mathrm{M}/\mathrm{L}$     |
| 16.         | M/L waits for departure (passengers≥ 70)    |
| 17.         | M/L waits for arrival at Remote             |
| 18.         | Aircraft ground time                        |
| 19.         | Other M/L travels to disabled M/L if loaded |
| 20.         | Aircraft ready for unloading                |
| 21.         | Aircraft taxi time                          |
| 22.         | Late aircraft departure                     |
|             |                                             |

# PASSENGER TIME STUDY VALUES

| FLIGHT NO.:               |                |                  |                |                |           | 8 6 0 0 0      |                  |
|---------------------------|----------------|------------------|----------------|----------------|-----------|----------------|------------------|
| 4                         | ~ ~ ~ ~ ~      | ****             | ****           |                |           | 4444           | 6666             |
| NO. OF PASSENGERS:        | 0000           | 62460            | 0 • 6 0 0      | 0 0 0 0        |           |                |                  |
| LOAD AT GATE 1 (DEP):     | 9 + 6 6 6      | 0000             | •••••          |                |           | 9              |                  |
| UNLOAD AT GATE 1 (ARR):   | <b>0 0 0 0</b> | <b>* * * * *</b> | :<br>6 • • • 8 |                |           |                | 0 0 0 0 0        |
| DURATION AT GATE 1:       | 0 6 0 0        |                  | • • • •        |                |           | • • • •        |                  |
| RATE PER PASSENGER (G/1): |                | · · · ·          |                |                | • • • • • | <b>9 • • •</b> | 00000            |
| LOAD AT REMOTE (DEP):     |                |                  |                | 6 9 0 5 6      |           |                |                  |
| UNLOAD AT REMOTE (ARR):   | • • • •        | 4 + 4 + d        |                | 9 <b>4 4 9</b> |           | 9 0 0 0        | 9 <b>4 + 9</b> 5 |
| DURATION AT REMOTE:       | 20260          | • • • •          |                |                |           |                |                  |
| RATE PER PASSENGER (REM): |                |                  |                | • • • •        |           |                |                  |
| UNLOAD AT IAB:            | • • • •        |                  |                | 0 0 0 0        |           |                | • • • • •        |
| RATE PER PASSENGER (IAB): |                |                  | 6 • · · •      | * * * * *      | 6 4 4 9   |                | •••••            |
| DATE-SHIFT:               |                | 5 4 0 8 6        |                |                |           | <b>***</b> **  | - `              |

We would like to point out here that a representative sample of data must be collected from both shifts, under various conditions, as well as different days of the week. The wide variation in operating policies, and the complexity of events that will affect the system must be realistically captured in the data collection process.

# III. ANALYSIS OF TIME STUDIES

In order to make a reasonable estimate of the distribution of the time element that we have collected, we summarized our data in a frequency histogram (Figure A-5). Our approach was to compare visually the observed frequency histogram with those of several theoretical distributions, as it served to suggest what distributions we wanted to try. Having identified one or more theoretical distributions - such as normal, poisson, gamma, etc. - that may fit our data, we then determined the distribution parameters so as to proceed with statistical testing and development of our model. The following two examples highlight the procedures used in duplicating the job state distribution characteristics.

# A. Job State #2

This time element in our simulation model consists of the mobile lounge travel time from Gate 1 to a departing flight in Remote. The frequency histogram in Figure A-5 depicts the nature of the time distribution of this job state according to our time study data. The first approach we took consisted of creating a cumulative probability distribution (Figure A-6). Nevertheless, we discarded this approach for the following reasons: (1) the use of this raw data implies that all one is doing is simulating the past, that is, the



Figure A-5



only events possible are those that actually occurred;

(2) it is generally more efficient of computer time and storage requirements to use a theoretical probability distribution; (3) it is much easier to change the parameters of a theoretical distribution generator to perform sensitivity tests or to ask "what if" questions.

Therefore, we decided to capture the characteristics of this distribution via a gamma random deviate generator of the form

$$f(x) = \frac{x^{-1} e^{-x/\beta}}{\beta^{\alpha}(\alpha - 1)!}$$

Where 
$$\alpha = \frac{\mu^2}{\sigma^2}$$
,  $\beta = \frac{\sigma^2}{\mu}$ 

Note that the mean  $\mu$  and the variance  $\sigma^2$  can be calculated from raw data by using:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n-1}$$

For this particular job state the following values were obtained

$$\sigma = 77.734$$

And a frequency histogram may be seen in Figure
A-7, which was truncated at our smallest observed
value (TRUNC1 = 185.0).

```
HRBIT TATALLY, HAB
THEFT MEDITAL, OF SITES INFORMAÇÃO, A
THEFT OF THE COURT OF TAXABLE AND A
THEFT TOTALLY HE SO TAXABLE AND ALL.
Antely M. R. 1604.19

Antely M. R. 1604.19

Antely M. R. 1604.19

Antely M. 1604.19

B. R. 1604.
  _( a )
                                                 -(0)
                                                 -( 6 )
                                                -( )) )
                                               -{ 0 }
                                                -( 6 )
        ~( 0 )
                                                  -( 0 )
                                           _ ( o )
                                           -( a )
                                            -(3)
         4487.5
487.5
487.5
5.0
                                                   -(1)
                                             PROGRAM USC (IMPUT.OUTPUT.OATAA, TAPES=IMPUT, TAPE6=OUTPUT, XTAPE3=CATAA)

UTMEASION AGAMM (1000) HORK (1000)

152e01 = 987604321

DC 30 I T. 100)

1 Time = Cosnad(ISEE01.10.36645.24.14327.1.HORK.RGANH)

If (IIME - 139.3) 1.1.2

2 MAITE (3.10) IIME
10 FARM.(11X,F10.3)
30 CONTINUE

EVOFILE 3

STOP
END
                                                   ~ ( J )
                                                   -(3)
                                                  -(0)
                                              -(0)
         6375.5
6577.5
6577.5
6677.5
6775
```

# B. Job State #3

This time element in our simulation model consists of the duration of loading time of departing passengers at Remote. Due to the interaction of the number of passengers, delay incurred that is not due to passengers, and the variable time elements of each, we chose regression analysis in order to estimate this job state time element.

Figure A-8 shows a plot of the total load duration (passenger load time plus delay time) of job state #3.

The least squares linear regression technique on this data resulted in the equation

$$y = mx + b = 5.88x + 86.62$$

with a correlation coefficient of

and a standard deviation

$$\sigma_{y} = 180.63$$

which indicated some degree of relationship between the number of passengers and the total time, though not precisely linear.



Figure A-8

To better determine the amount and source of variability, a separate plot of passenger loading time alone, without delays, is found in Figure A-9. The least squares linear regression technique on this element alone gave excellent results, as in the equation

$$y = mx + b = 5.35x - 35.36$$

with a correlation coefficient of

and a standard deviation

$$\sigma_{y} = 124.17$$

which indicates a very high linear relationship between the number of passengers and their loading time. Both equations are plotted on Figure A-10.

Therefore, it only remained to compare how a composite function compared with a linear regression on the total time.

In Figure A-11, a plot of the delay not due to passengers shows the random nature of its occurence, so a



to Million to a to the Continue for

Figure A-9



Figure A-10



Figure A-11

frequency histogram (Figure A-12) gave a better indication of the delay occurrence at Remote in this job state. We chose to duplicate this distribution utilizing a gamma random deviate generator with these parameters:

$$\mu = 143.53$$
  $\alpha = 1.77242$   $\sigma = 107.81$   $\beta = 80.97953$ 

Note that the composite form  $R(j) = f(P)_j + \Delta_j$  was chosen because it gave more accurate and tighter results, that is,

$$[(124.17)^2 + (107.81)^2]^{\frac{1}{2}}$$
 < 180.63

A random error component € was also included in our linear regression analysis, to account for the variation in passenger load time, assumed to be distributed normal (0, 1). Therefore, our linear regression equation is of the form

$$y = mx + b + \epsilon = 5.35x - 35.36 + 124.17[N(0,1)]$$
where  $\epsilon \sim N(0,1) = \sigma_{\tilde{Y}}[N(0,1)]$ .

Here again we chose to truncate our distribution at our



Figure A-12

smallest observed value (TRUNC3 = 130.0).

See Figures A-13 and A-14 for the frequency histogram of the computer results of the delay distribution, and the end result of the total job state random time generator.

### C. Software Used

By this time, it has become apparent that we used several proven computer routines that were available to us at the Office of Computing Services on Georgia Tech Campus.

Some documentation of these library (IMSLIP, MSFLIB) subroutines (GGTMAJ, GGNOF, NRML) are provided for the reader's convenience, by courtesy of Control Data Corporation, as we used their Cyber 70 Model 74-28/CDC 6400. (See Appendix B). Other questions in this area can be directed to:

or

Dwighd D. Delgado 16000 Terrace Road Apt. 1906 Cleveland, Ohio 44112

131 Hillandale Toccoa, Georgia 30577

Eddie L. Holcomb or Jerry W. Segers Department Manager Office of Computing Services Georgia Tech Atlanta, Georgia 30332

```
SAMPLE NEAN= 145.623
SAMPLE VARIANGE = 11667.3
SID. DEVIATION= 103.016
MEDIAN= 122.716
MODAL CLASS INTERVAL IS 50 TO 75
MODE = 51.3231
RANGE = 730.484
MIDRANGE = 336.645
MIDROINT * FREDURNGY MASED MEAN= 143.925
MIDROINT * FREDURNGY MASED VARIANGE = 10960.
STO. DEV. = 104.69
   1
   1
                D 15 30 45 60 75 90 105 120 135
                                -+**** ( 5H )
                ****** ( 104 )
                                - * * * * * * * * * * * ( 37 )
                                -+++++++++ 1 36 )
                                -**+****+( 32 )
                                -****** ( 23 )
 WOOSE BUTTERS FORMS, INC.
                                -****( 17 )
                                -+++( 14 )
                                -++( 0)
                 400
                -+ ( 4 )
                                                                          PROGRAM GAMMA
                                                                                                                   74/74
                                                                                                                                   OPT=1
                                - * * * ( 9 )
 SPLECTORY
                                                                                                    PROGRAM GAMMA(INPUT, OUTPUT, OATAA, TAPES=INPUT YTAPES=BATAA)

DIMHINSTON EGAMM(1000), WOFK(1000)

ISSECT = 947654321

DO 30 I=1,1000

DELAYT = GATMAJ(ISEED1,1.77242,80.97953,1,WC)

IF(DELAYT) 1,1,12

WRITE(3,10) DELAYT

FORMAT(5X,F10.3)

CONTINUE
ENDETILE 3

REWIND 3

STOP
END
                                -+(5)
                               -+( 4 )
                               -(2)
   4
         11
               1537.5 -(2)

1550 -(1)

575 -(1)

587.5 -(0)

612.5 -(-1-)

625

637.5 -(0)

662.5 -(0)

675

687.5 -(0)
                                                                                                10
   (
   (
1
   (
   (
   1
```

|      | 1005                                             | 1200000                                                | S. A. S.                                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 10                                               | - 214.77                                               | 335.43                                                                       | completely becomes a sign comment of the comments of the com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 13 .9522                                         | 99.54<br>31.47<br>133.10                               | 136.37<br>335.43<br>175.35<br>186.57                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 14                                               |                                                        | 103.45                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 17 -:1268                                        | 235.51<br>123.63<br>227.73<br>82.72<br>84.72<br>277.16 | 253.05<br>303.65<br>303.65<br>303.65<br>303.65<br>303.65<br>303.65<br>303.65 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 13                                               | 65.50                                                  | 251.30                                                                       | (A) to be a first the companion of the c |
|      | 19 .4520<br>20 1.2675<br>213333                  | 277:16                                                 | 305.55                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 23 1.0/63                                        | 149.36                                                 | 351.75                                                                       | where the commendation is a summary of the commendation of the commendation of the last of the commendation of the commendatio |
|      | 24 -1.1595<br>-2.4316<br>26 -1.3552<br>-1.2073   | 292.69<br>474.67<br>75.67                              | 271.11                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 23 -1.179<br>24 -1.1596<br>-2.4318<br>26 -1.2573 |                                                        | 139.56                                                                       | Control of the Contro |
|      | 283109                                           | 254.74                                                 | 294.54                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 27                                               | 106.51                                                 | 213.03                                                                       | and the second control of the contro |
|      | 31<br>32<br>33<br>1:552<br>1:558                 | 290.73<br>135.53                                       | 445.34<br>411.54                                                             | , i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 34 1161 35 1 1 35 30 24 20 37 23 18              | 57.11                                                  | 441.19                                                                       | The second secon |
|      |                                                  | 116.68                                                 | 151.28                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 36                                               | 215.53                                                 | - 29/.14<br>356.45<br>543.06                                                 | The second design of the second secon |
| 13   | 10 11875                                         | 341.14                                                 | 343.06                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1  |                                                  | 316.34                                                 |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 413197<br>423544<br>433544                       | 14.55                                                  | 240.91                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 41                                               | 74.56                                                  | 454.14<br>24J.91<br>337.53<br>131.63<br>350.23                               | The second section of the second second second second second section (second second se |
|      | 46 -1.1365                                       | 256.98                                                 | 320.39                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                  | 146-12                                                 | 399.71                                                                       | The second secon |
|      | 49 :3333<br>50 :5557<br>51 -1:3514<br>-1:7654    | 57.04<br>144.55<br>362.47                              | 445.68<br>372.15<br>338.22                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 52 .7654                                         | 50.34<br>164.91<br>373.15                              | 330.22                                                                       | the state of the s |
|      | 53 .6568<br>544356<br>55 1.2780                  | 373.15                                                 | 434.63<br>954.95<br>431.98                                                   | 270GRAH JS3 74/74 CPT=1 FTN 4.6+42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 56 .7177                                         | 74.40<br>77.5d                                         | 433.94<br>637.59<br>407.54<br>563.33                                         | PROGRAM JESCINGUT, CUTPUT, CATAB, TARES=INPUT, TARES=DUTPUT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 582353                                           | 249./1<br>161.42<br>                                   | 563.33                                                                       | PROCEAM JES(INCUT, CUTPUT, CATAE, TARES=IMPUT, TARE6=OUTPUT, XTARES=CATAE) DIVENSION SOLVES(1800), WORK(2) 15(10 = 12465759 15(10 = 12465759 15(10 = 12465758 SUN-SUNX2=SUNY2=SUNXY=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                  | 113.75                                                 | 412,19                                                                       | 15010 = 12.1456759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 61 -2.1010<br>62 -3328<br>63 -1.7239             | 71.11                                                  | 181.11<br>367.79<br>275.56                                                   | SUYX=SUMX2=SUMY2=SUMXY=0.0<br>N = 0.6<br>N=1TE(4,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 643349<br>656376<br>66 1.2739                    | 355.67                                                 | 276.56<br>021.11<br>555.07                                                   | 4 FOSPAT (18.5x. "NOFASS", 6x, "RANDON", 6x, "GELAYT", 6x, "PLOADT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 66 1.2739<br>67 -1.1951                          | 315.17<br>134.65<br>63.40<br>115.61                    | 171.17                                                                       | CC 3C NOFASS=10.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 67 -1.3951<br>68 -1.0263<br>-1.2339<br>70 -3748  | 119.61<br>269.69<br>169.89                             | 315.52                                                                       | 5. RANDOM = GUNCF(ISCES)<br>PLCACT = 9.39 NOPESS -35.36 + 121.17*RANCOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1000 | 71                                               | 172,49                                                 | 370.65                                                                       | DELAYT = GGTMA_(ISEED1.1.77242.80.57951.1.402K.RG4MH3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 71                                               | 57.17                                                  | 313.59                                                                       | 1 FCHCANT -131.0) 9.7.5<br>E HSIIL(3,:C) NOFASS, N. NOP, OELAYT, PLOACT<br>10 FCHCAT (7x, 13, 15), F5.4.4x, F3.2, 4x, F2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 75                                               | 125.46                                                 | 446.02<br>603.19<br>567.42                                                   | x = 600455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 76 -: 2201                                       | 166.89                                                 | 1 1 4                                                                        | SUFXY = SUNXY : X+Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 77(8/5<br>78 .7135<br>79 5927 -                  | 130.96                                                 | 542.75                                                                       | * FGF**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 61 1.0589                                        | 134.51<br>230.53<br>90.74                              | 7.9.01                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . 13 | 63 1.33.0                                        | 31.46                                                  | 642.94<br>611.85<br>562.77                                                   | 30 CONTINUE  30 CONTINUE  A = SUMNY - SUMNY-SUMNZAN  C = SUMNZ - (SUMX-SIMAN  C = SUMNZ - (SUMX-SIMAN  C = SUMNZ - (SUMX-SIMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 85 -1.7/9<br>86 -1.4/5                           | 142.39<br>475.28<br>55.27                              | 643.43                                                                       | A = SUNCY - SUNY SLYAVAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                  | 75.41                                                  | 437.02                                                                       | C = SCHYZ = (SCHY**Z1/AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 44 440                                           | 197,47                                                 | 520.55                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 90 -1.0071                                       | 307.19                                                 | 144.12                                                                       | 40 FC 5 2 1 1 / 1 / 2 Y = H . X + B, THE VALLES ARE")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 3  | 93 1.4043                                        | 103.13                                                 | 753.07                                                                       | 6 = A/SIST(0+3)<br>+ft = (SUTY - EH*SUHA)/AN<br>REITL(3,40)<br>40 FCC**AITV/*X." FOR Y = H * X + B, THE VALUES ARE")<br>HAITL(3,90) LE.BLC.X = ".FG.2.5X."R = ".FG.2)<br>(ALTILL 3<br>KETTLE 4<br>STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 95 -:1103                                        | 100.57                                                 | 6 3 no 85                                                                    | (A(11), 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 707                                              | 65.98                                                  | t d1. 34                                                                     | KENIAC 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 0.0                                              | . 0 + . 0 1,                                           | 2.216 17                                                                     | CNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 00 -1.054A                                       | 525 . A                                                | 41,4 . 6 8                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# IV. REFINEMENTS

In order to upgrade the performance of our simulation model and to maintain and/or improve its relevance with the current operation of the Mobile Lounge System, three main areas come to mind:

# A. Data Collection

More and constant data gathering, not only to improve the statistical fit of the theoretical distributions with actual data, but also to capture the seasonal characteristics (i.e., Christmas) of the system, would greatly improve the accuracy of our simulation model.

# B. Computations

As more data is collected, the need may arise to compare various theoretical distributions and their performance with actual distribution data for each individual time element. For example, comparison between the gamma and the normal generator and their frequency histogram results may render one distribution function more desirable than another under various conditions.

# C. Other

There are several improvement opportunities available in our simulation model that would also enhance

the reliability of scheduling aircraft into Remote.

These areas primarily consist of departure and arrival deviations, which are subject to change according to time of day, day of week, etc.

Another area involves the duration and the breakdown frequency of the mobile lounges, as these are subject to change as time passes, and as to how effective preventative maintenance can be.

There are also other job states which can be added to the model to "predict" the performance of the system.

These may include four mobile lounges, relocation of IAB under Gate 1, etc.

# APPENDIX B

This appendix contains some documentation of the computer library routines used in our simulation program. They are:

# I. IMSLIB

- a. GGEXP generates exponential deviates
- b. GGNOF generates normal (0, 1) deviates
- c. GGPOSR generates poisson deviates
- d. GGTMAJ generates gamma deviates
- e. GGUB basic uniform random number generator

# II. MSFLIB

2

a. NRML - generates normal ( $\mu, \sigma$ ) deviates

Similar computer library routines are available in the General Electric Computer Software.

TMSL LIB3-0005 Revised November, 1975



# LIBRARY 3

# Reference Manual

This manual contains a detailed discussion of IMSL Library 3, an extensive collection of mathematical and statistical subroutines written in FORTRAN, for the CDC 6000/7000 Series, and CYBER 70/170 Series machines. The discussion includes subroutine descriptions as well as recommendations for use and implementation into the user's library environment.

VOLUME I CHAPTERS A-I

Product: IMSL Library 3, Edition 5, 1975 (FORTRAN) CDC 6000/7000,

CYBER 70/170 Series



## INTRODUCTION

IMSL Library 3 is a set of computational subroutines written in FORTRAN and tested on the CDC 6600. All subroutines in the library adhere to a common set of conventions, developed by IMSL. This implies consistency across the set.

Abilities residing in Library 3 have the following attributes:

- 1. Testing was performed in the KRONOS environment.
- 2. For each routine which has error detecting capability, the user is protected by default. That is, if a user chooses to ignore error possibilities, he is warned. To prevent the appearance of this warning, he must revise the routine by omitting all FORTRAN statements between statement number 9000 and the RETURN statement.
- 3. Each ability conforms to established conventions, in coding and documentation.
- 4. Each ability was designed by individuals at the doctoral level, and documented to be used by technical personnel in fields of engineering, medicine, agriculture,..., and in research activities.
- 5. Accuracy of results, clarity of documentation, and efficiency of coding were given first priority in development.
- 6. No attempt has been made to teach mathematics or statistics in this manual. Users are guided to correct abilities for specific problems. Periodicals and books are referenced for details of algorithmic development.
- 7. Often, tests for applicability of the algorithm are applied; the user is warned if the algorithm fails. Pitfalls to be avoided in usage are noted.
- 8. All information pertaining to library usage is available in this manual. All information pertaining to the usage of one ability is in one place. Documentation is a combination of printed matter and machine listings.
- 9. Machine readable documentation permits browsing and debugging. It is pictured in the manual and distributed with the source programs. For more difficult usage problems, users may refer to printed information in the manual.
- 10. Designers and implementers (or IMSL personnel responsible for the code) are noted in the documentation, for user reference.
- 11. Symmetric, band, band symmetric, and Hermitian matrix abilities utilize memory saving storage techniques.
- 12. With the exception of the Utility Functions Chapter abilities, all IMSL library abilities are input-output free.
- 13. Most routines have documented examples of input and results.

IMSL makes no warrants pertinent to its programs other than those stated above. IMSL is the sole owner of the programs in the IMSL Library and is solely responsible for their operation IMSL is the sole source of technical information regarding these programs, and a mechanism for contacting IMSL for such information is given under the title "USER-IMSL INTERACTION" later in this introduction.

|     | SUBROUTIN  | E GGEXP  | ( ] | (SEED+XM+N+R)                                | GGEX0010      |
|-----|------------|----------|-----|----------------------------------------------|---------------|
| С   |            | _        | _   |                                              | GGEX0020      |
| C-G | GEXP       | -5       | -L  | BRARY 3                                      |               |
| C   |            |          |     |                                              | GGEX0040      |
| С   | FUNCTION   |          | -   | GENERATES EXPONENTIAL DEVIATES WITH MEAN XM  | GGEX0050      |
| С   |            |          |     | AND STANDARD DEVIATION XM.                   | GGEX0060      |
| С   |            |          |     | THE DISTRIBUTION FUNCTION IS P=1-FXP(-X/XM). | GGEX0070      |
| С   |            |          |     | WHERE X IS GREATER THAN OR EQUAL TO TERO.    | GGEX00H0      |
| С   |            |          |     | THIS ROUTINE USES UNIFORM (0,1) DEVIATES     | GGEXON9N      |
| С   |            |          |     | IN VECTOR R. GENERATED BY GGUH. AND          | GGEX0100      |
| С   |            |          |     | TRANSFORMS USING                             | GGEX0110      |
| С   |            |          |     | -1                                           | GGEX0120      |
| Ç   |            |          |     | X = P (Y)                                    | GGEX0130      |
| С   | USAGE      |          | -   | CALL GGEXP(ISEED.XM.N.P)                     | GGEX0140      |
| С   | PARAMETERS | ISEED    | -   | INPUT. AN INTEGER VALUE IN THE EXCLUSIVE     | GGEX0150      |
| C   |            |          |     | RANGE (1,2147483647). ISEED IS USED TO       | GGEX0150      |
| Ç   |            |          |     | INITIATE THE GENERATION, AND ON EXIT, HAS    | GGEX0170      |
| C   | *          |          |     | BEEN REPLACED BY A NEW ISEED FOR SUBSEQUENT  | GGEX0180      |
| С   |            |          |     | USE.                                         | GGEX0190      |
| С   |            | XM       | -   | INPUT MEAN VALUE.                            | GGEX0200      |
| С   |            | N        | -   | INPUT NUMBER OF DEVIATES TO BE GENERATED.    | GGEX0210      |
| С   |            | R        | -   | OUTPUT VECTOR CONTAINING THE EXPONENTIAL     | GGEX0220      |
| С   |            |          |     | DEVIATES. R MUST BE AT LEAST N IN LENGTH.    | 0FZ0X359      |
| С   | PRECISION  | •        | -   | SINGLE                                       | GGE X 0 2 4 0 |
| С   | REUD. IMSL | ROUTINES | -   | GGUB .                                       | GGEX0250      |
| С   | LANGUAGE   |          | -   | FURTRAN                                      | GGEX0260      |
| C   |            |          |     |                                              | -GGEX0270     |

| t <sub>e</sub> | FUNCTION   | GGNOF    | (ISEED)                                     | GGNN0010  |
|----------------|------------|----------|---------------------------------------------|-----------|
| C              |            |          |                                             | GSNN0020  |
| C-6            | GNOF       | S        | LIBRARY 3                                   | -GGNN0030 |
| C              |            |          |                                             | GGNN0040  |
| С              | FUNCTION   |          | - GENERATE ONF NORMAL (0+1) PSEUDO RANDOM   | GGNN0050  |
| C              |            |          | NUMBER BY INVERTING THE NORMAL PROBABILITY  | GGNN0060  |
| C              |            |          | DISTPIBUTION. GGUB (CODED INTERNALLY)       | GGNN0070  |
| (              |            |          | PROVIDES THE UNIFORM PSEUDO RANDOM DEVIATE. | GGNN0080  |
| C              | USAGE      |          | - FUNCTION GGNOF (ISEED)                    | GGNN0090  |
| C              | PARAMETERS | GGNOF    | - RESULTANT NORMAL (0.1) DEVIATE.           | GGNN0100  |
| C              |            | ISEED    | - INPUT. AN INTEGER VALUE IN THE EXCLUSIVE  | GGNN0110  |
| C              |            |          | RANGE (1.2147483647). ISEED IS REPLACED BY  | GGNN0120  |
| C              |            |          | A NEW ISEFD TO BE USED IN SUBSEQUENT CALLS. | GGNN0130  |
| C              | PRECISION  |          | - SINGLE                                    | GGNN0140  |
| C              | REQD. IMSL | ROUTINES | - MERFI DERTST                              | GGNN0150  |
| С              | LANGUAGE   |          | - FORTRAN                                   | GGNN0160  |
| C              |            |          |                                             | -GGNN0170 |

FUNCTION GGNOF (ISEED)

# Purpose

Generate one pseudo random normal (0,1) deviate.

# Algorithm

Given ISEED, IMSL routine GGUBF is used (coded internally) to generate a uniform (0,1) pseudo random deviate. Then the inverse normal routine MDNRIS is called to transform this deviate to a normal deviate with mean zero and unit variance.

|     | SURROUTINE | GGPOSH   | (RLAM. ISEED. N.K. IER)                         | GGPH0010  |
|-----|------------|----------|-------------------------------------------------|-----------|
| С   |            |          |                                                 | GGPH0020  |
| C~G | GPUSH      | · S      | ·LIBRARY 3                                      | -GGPH003n |
| E   |            |          |                                                 | GGPH0040  |
| С   | FUNCTION   |          | - GENERATE POISSON RANDOM DEVIATES              | GGPH0050  |
| С   | USAGE      |          | - CALL GGPOSH(HLAM+ISEED+N+K+IER)               | GGPH0060  |
| C   | PARAMETERS | RLAM     | - INPUT POISSON PARAMETER. RLAM MUST BE         | GGPH0070  |
| Č   |            |          | GREATER THAN U.                                 | GGPH0080  |
| Ċ   |            | ISEED    | - AN INTEGER VALUE IN THE EXCLUSIVE HANGE       | GGPH0090  |
| Ċ   |            |          | (1,2147483647). ISEED IS USED TO INITIATE       | GGPH0100  |
| Č   |            |          | THE GENERATION. AND ON EXIT. HAS REFN           | GGPH0110  |
| Ċ   |            |          | REPLACED BY A NEW ISEED FOR SUBSEQUENT USE.     | GGPH0120  |
| Č   |            |          | (INPUT)                                         | GGPH0130  |
| č   |            | N        | - THE NUMBER OF RANDOM NUMBERS TO BE GENERATED. |           |
| Č   |            |          | (INPUT)                                         | GGPH0150  |
| č   |            | к        | - RESULTANT VECTOR OF LENGTH N.                 | GGPH0160  |
| č.  |            | IER      | - ERROR PARAMETER.                              | GGPH0170  |
| č   |            |          | TERMINAL ERROR =128+N.                          | GGPH0180  |
| č   |            |          | N = 1 INDICATES THAT RLAM WAS SPECIFIED         | GGPH0190  |
| Ċ   |            |          | LESS THAN OR EQUAL TO ZERO.                     | GGPH0200  |
| č   | PRECISION  |          | - SINGLE                                        | GGPH0210  |
| č   | · -        | ROUTINES | - GGUR, UERTST                                  | GGPH0220  |
| č   | LANGUAGE   |          | - FORTRAN                                       | GGPH0230  |
| Č== |            |          |                                                 | -66PH0240 |

CALL GGPOSH(RLAM, ISEED, N, K, IER)

# Purpose

GGPOSH generates N Poisson random deviates.

#### Algorithm

The resultant  $K_i$ , where i=1,2,...,N, is a number j such that  $r_1^r_2...r_j$  is greater than  $e^{-\lambda}$ .  $r_1,r_2,...,r_j$  are uniform random numbers generated by GGUB;  $\lambda$  is stored in RLAM.

See reference: Schaffer, Henry E., "Algorithm 369, generator of random numbers satisfying the Poisson distribution", Comm. ACM, 13(1) 1970, 49.

# Programming Notes

Subroutine GGPOSH should be used to generate Poisson deviates when RLAM is changed frequently and when N, the number of deviates requested, is small. In other cases, subroutine GGPOSR should be used.

# Example

Using a starting ISEED=123457, and generating 1000 Poisson ( $\lambda$ ) deviates,  $R_1$ , the mean  $\hat{\mu}$  and variance  $\hat{\sigma}^2$  were computed. The expected values for the estimators corresponding to  $\hat{\mu}$  and  $\hat{\sigma}^2$  are both  $\lambda$ .

$$\hat{\sigma}^{2} = \sum_{i} (R_{i} - \hat{\mu})^{2} / 999.$$

| λ   | μ                       | Ĝ²                      | η<br>α~ |
|-----|-------------------------|-------------------------|---------|
| 0.5 | .556<br>.462<br>.506    | .529<br>.459<br>.520    | 0.02    |
| 3.5 | 3.571<br>3.488<br>3.430 | 3.378<br>3.225<br>3.599 | 0.06    |
| 6.5 | 6.508<br>6.460<br>6.547 | 6.201<br>6.600<br>6.704 | 0.08    |
| 9.5 | 9.485<br>9.526<br>9.600 | 9.336<br>9.642<br>9.722 | 0.10    |

|     | SUBROUTIN  | E GGPOSR | (RLAM+ISEED+N+K+IEH)                        | GGPR0010  |
|-----|------------|----------|---------------------------------------------|-----------|
| С   |            |          |                                             | GGPK0020  |
| C-G | GP05k      | -5       | LIBRARY 3                                   | -GGPR0030 |
| č   |            |          |                                             | GGPR0040  |
| С   | FUNCTION   |          | - GENERATE POISSON RANDOM DEVIATES          | GGPR0050  |
| С   | USAGE      |          | - CALL GGPOSR(RLAM, ISEED, N.K, IER)        | GGPR0060  |
| С   | PARAMETERS | RLAM     | - INPUT POISSON PARAMETER. RLAM MUST RE     | GGPR0070  |
| С   |            |          | IN THE RANGE (0.,670.) INCLUSIVE.           | GGPK0040  |
| С   |            | ISEED    | - INPUT. AN INTEGER VALUE IN THE EXCLUSIVE  | GGPk0090  |
| С   |            |          | RANGE (1.2147483647). ISEED IS USED TO      | GGPR0100  |
| С   |            |          | INITIATE THE GENERATION. AND ON EXIT. HAS   | GGPH0110  |
| Ç   |            |          | BEEN REPLACED BY A NEW ISEED FOR SURSEQUENT | GGPH0120  |
| С   |            |          | USE.                                        | GGPH0130  |
| С   |            | N        | - INPUT. THE NUMBER OF RANDOM NUMBERS TO BE | 5GPR0140  |
| С   |            |          | GENERATED.                                  | GGPR0150  |
| C   |            | ĸ        | - RESULTANT VECTOR OF LENGTH N.             | GGPR0150  |
| Ç   |            | IER      | - ERROR PARAMETER.                          | GGPH017u  |
| С   |            | •        | TERMINAL ERROR = 128+N.                     | GGPR0180  |
| Ç   |            |          | N = 1 INDICATES THAT RLAM WAS SPECIFIED     | GGP#0190  |
| C   |            |          | LESS THAN ZERO OR GREATER THAN 670.         | GGPH0200  |
| С   | PRECISION  |          | - SINGLE                                    | GGPR0210  |
| C   | REOD. IMSL | ROUTINES | - GGUB UERTST                               | 66PH0220  |
| Ç   | LANGUAGE   |          | - FORTRAN                                   | GGPR0230  |
| Ç   |            |          |                                             | -GGPR0240 |

CALL GGPOSR (RLAM, ISEED, N, K, IER)

# Purpose

GGPOSR generates N Poisson random deviates.

# Algorithm

The resultant K<sub>j</sub> where i=1,2,...,N, is the smallest number, m, such that r is less than or equal to  $\sum_{j=0}^{m} e^{-\lambda} \lambda^{j} / j!$  where r is a uniform random number generated by GGUB;  $\lambda$  is stored in

## RLAM.

See reference: Snow, Richard H., "Algorithm 342, generator of random numbers satisfying the Poisson distribution", Comm. ACM, 11(12) 1968, 819.

# Programming Notes

Subroutine GGPOSR should be used to generate Poisson deviates when RLAM is not changed frequently or when N, the number of deviates requested is large. In other cases GGPOSH should be used.

For large generated uniform numbers and large  $\lambda$ , it is possible that a calculated term of the Poisson sum will not add, given a particular machine precision, to the current sum. In this case, which occurs with very small probability, the Poisson deviate is set to the sum of its count prior to the occurrence and a uniform deviate in the range  $[0.5, 1.5]\lambda$ .

# Example

Using a starting ISEED=123457, and generating 1000 Poisson ( $\lambda$ ) deviates,  $R_{1}$ , the mean ( $\mu$ ) and variance ( $\hat{\sigma}^{2}$ ) were computed. The expected values for the estimators corresponding to  $\hat{\mu}$  and  $\hat{\sigma}^{2}$  are both  $\lambda$ .

$$\hat{\sigma}^{2} = \sum_{i} (R_{i} - \hat{\mu})^{2} / 999.$$

| λ   | μ                       | $\hat{\sigma}^2$        | σ <b>^</b><br>μ |
|-----|-------------------------|-------------------------|-----------------|
| 0.5 | .534<br>.521<br>.473    | .511<br>.534<br>.492    | 0.02            |
| 3.5 | 3.548<br>3.506<br>3.458 | 3.651<br>3.631<br>3.344 | 0.06            |
| 6.5 | 6.560<br>6.515<br>6.450 | 6.887<br>6.812<br>6.233 | 0.08            |
| 9.5 | 9.587<br>9.529<br>9.445 | 9.799<br>9.932<br>9.025 | 0.10            |

| -   | SUBROUTIN  | E GGTMAJ | SEED . A . B . | N+W+R1                               | GGTJ0010  |
|-----|------------|----------|----------------|--------------------------------------|-----------|
| C   |            |          |                |                                      | GGTJ0020  |
| C-( | GGTMAJ     | -S       | BRARY 3        |                                      | -GGTJ0030 |
| C   |            |          |                |                                      | GGTJ0040  |
| C   | FUNCTION   |          | GENERATE       | GAMMA RANDOM DEVIATES. (PEJECTION    | GGTJ0050  |
| C   |            |          | METHOU)        |                                      | GGTJ0060  |
| C   | USAGE      |          | CALL GGTM      | AJ (ISEED + A + B + N + W + R)       | GGTJ0070  |
| C   | PARAMETERS | ISEED    | INPUT. A       | N INTEGER VALUE IN THE EXCLUSIVE     | GGTJ0080  |
| C   |            |          | RANGE (        | 1,2147483647). ISEED IS USED TO      | GGTJ0090  |
| C   |            |          | INITIAT        | E THE GENERATION. AND ON EXIT. HAS   | GGTJ0100  |
| C   |            |          | BEEN RE        | PLACED BY A NEW ISEED FOR SURSEQUENT | GGTJU110  |
| C   |            |          | USE.           |                                      | GGTJ0120  |
| C   |            | A        | INPUT. FI      | RST GAMMA PARAMETER. A MUST HE       | GGTJ0130  |
| C   |            |          | GREATER        | THAN ZERO (SHAPE PARAMETER).         | GGTJ0140  |
| C   |            |          | AND SHO        | ULD HE GREATER THAN 0.1              | GGTJ0150  |
| C   |            | В        | INPUT. SE      | CUND GAMMA PARAMETER (SCALE          | GGTJ0160  |
| C   |            |          | PARAMET        | ER). BETA MUST HE GHEATEP THAN ZERO. | GGTJ0170  |
| C   |            | N        | INPUT. NU      | MBER OF DEVIATES TO BE GENERATED     | GGTJ0180  |
| C   |            | W        | WORKING S      | TORAGE VECTOR OF LENGTH M. WHERE M   | GGTJ0190  |
| C   |            |          | IS THE         | GREATEST INTEGER IN A+1. ON OUTPUT,  | WGGTJ0200 |
| C   |            |          | CONTAIN        | S THE NEGATIVE OF LOGARITHMS OF      | GGTJ0210  |
| C   |            |          | RANDOY         | UNIFORM DEVIATES.                    | GGTJ0220  |
| C   |            | R        | OUTPUT VE      | CTOR OF LENGTH N CONTAINING THE      | GGTJ0230  |
| C   |            |          | GAMMA D        | EVIATES.                             | GGTJ0247  |
| C   | PRECISION  |          | SINGLE         |                                      | GGTJU250  |
| C   | REGD. IMSL | ROUTINES | GGBTA . GGU    | 8                                    | GGTJOZ60  |
| C   | LANGUAGE   |          | FORTHAN        |                                      | 66TJ0270  |
| C - |            |          |                |                                      | -GGTJ0286 |

CALL GGTMAJ (ISEED, A, B, N, W, R)

# Purpose

GGTMAJ generates an N-vector of gamma (A,B) deviates which are distributed as:  $Kx^{A-1}exp(-x/B)$ ; x,A,B all positive.  $K=1/(\Gamma(A)B^A)$ 

# Algorithm

A rejection technique due to Johnk is used.

See references: (1) Johnk, M.D., "Erzung von betaverteiler und gammaverteiler zufallzahlen", Metrika, 8(2) 1964. (2) Phillips, Don T., and Beightler, Charles S., "Procedures for generating gamma variates with non-integer parameter sets", Journal of Statistical Computation and Simulation, 1, 1972, 197-208.

#### Programming Notes

This algorithm requires calculations which could cause under or overflows. Their detection prior to calculations is too expensive. Results should be acceptable if they occur.

#### Example

Using two different seeds, the following table of statistics was produced. Considering these results and those given in routine GGTMAl, it is felt that this generator is to be preferred over GGTMAl, especially for A larger than 1. Reference 2 above notes that tests imply a preference for GGTMAl for small A (in the (.1, 1) range). See the GGTMAl document (Example). This method (Johnk) requires more time than GGTMAl, but test results seem to allow more reliance on the generated deviates' distributional form.

Timing statistics: As noted in the comparison given in GGTMAl, when 1000 deviates were produced (IBM 370/155) on one call, GGTMAJ required .65 ms per deviate when A=B=1. 1.10 ms per deviate was required when A=B=3.

# TEST OF GGTMAJ GAMMA GENERATOR 8=2.0

- \* MEANS REJECTION AT THE 5 PERCENT LEVEL IS IN ORDER
- \*\* MEANS REJECTION AT THE 1 PERCENT LEVEL IS IN ORDER
- (2) IMPLIES THAT THE MEAN IS NOT WITHIN THE TWO STANDARD DEVIATION CONFIDENCE ROUND

|            | OOND<br><del>444444</del> 444 |                  | ****          | *****            | ***           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------------------------|------------------|---------------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Δ          |                               | I=10             |               | =50              |               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ***        | ***                           | ****             |               |                  | ***           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . 2        | .43                           | / .41            | •55           | / .29            | . 45          | / .29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | .25                           | / .25            | 1.29          | / .40            | 1.20          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | .34                           | / .33            | <b>.</b> 89   | <b>/ .</b> 88    | •93           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •35        | •37                           | / .26            | <b>.</b> 58   | / .79            | •53           | / .81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | .27                           | / .29            | • 42          | / 2.80           | .74           | / 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | .61                           | / .96            | •38           | / •85            | .52           | / .37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>.</b> 5 | .43                           | / .91            | •99           | / 1.07           | .87           | / 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | •54                           | / 1.66           |               | / 1.42           | 1.70          | The state of the s |
|            | •76                           | / 1.00           | • 38          | / .20            | .42           | / .12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • 7        | 1.18                          | / 1.51           | 1.54          | / 1.52           | 1.27          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                               | / 2.46 .         |               |                  | 2.63          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | -61                           | / .92            | •56           | / .66            | . 25          | / *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • 85       | 1.16                          | / 1.80           | 1.82          | / 1.73           | 1.79          | / 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                               | / .90            | 2.71          | / 2.93           | 2.87          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 1.00                          | / .15            | •39           | / .97            | *             | / .41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.0        | 1 70                          | / 2 20           | 3 = 3         |                  | 2 20          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0        | 5.53                          | / 2.30<br>/ 9.50 |               | / 2.14<br>/ 3.88 | 2.28<br>6.50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                               | / .97            | •06           |                  | •51           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | • 40                          | 7 + 71           | • 90          | / •32            | *21           | / •31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2        | 1.82                          | / 2.41           | 2.13          | / 2.23           | 2.43          | / 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                               | / 3.77           | 3.64          | / 4.21           | 4.76          | / 5.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                               | / .88            | •87           |                  | .96           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | • • •                         |                  | •             | 4170             | •,,,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.7        | 3.47                          | / 4.53           | 3.61          | / 3.14           | 3.35          | / 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                               | / 6.52           | 4.87          |                  | 7.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | .91                           | / .10            | •37           | / .50            | .88           | / •45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.3        |                               | / 3.38           | 5.28          |                  | 4.65          | / 5.24(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 4.42                          | / 5.49           | 10.30         | / 8.61           | 8.87          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | • 26                          | / .10            | •08           | / .10            | .97           | / *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.7        |                               | / 6.90           |               | / 6.67(2)        | 5.60          | / 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                               | /25.61           |               | /14.63           | 12.09         | /11.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | •95                           | / .64            | • 4 0         | / *              | •90           | / .29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -          |                               |                  |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.6        | 7.61                          | / 7.82           | 6.66          | / 7.27           | 7.52          | / 8.24(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 4.38                          | /10.40           | 13.44         | /13.88           | 15.06         | /22.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | . 44                          | / .72            | •43           | / •95            | .24           | / .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 0.55                          |                  | 7             |                  | 7             | 4.8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.0        | 8.35                          | / 8.16           | 7.92          | / 6.96(2)        | 7.30          | / 8.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 15.16                         | / R.69           | 13.96         | /12.35           | 15.76         | /14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | .98                           | / .82            | • 66          | / ∙55            | ò             | / .63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.6        | 10 25                         | /10 04           | 0.00          | . 0 . 4 0        | 0 11          | / 9.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 • C      | 10.25                         | /10.04           | 9.92<br>18.19 | / 9.48           | 9.11<br>20.92 | / 9.61<br>/15.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 31.14<br>.80                  | /21.57<br>/ .96  | .40           | /20.12<br>/ .73  |               | / .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | • 70 0                        | / •70            | • 4 0         | , .13            | • 4 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 5 • 4 | 9.87    | /10.79                                  | 11.88   | /12.70(2)      | 10.91  | /10.82        |
|-------|---------|-----------------------------------------|---------|----------------|--------|---------------|
|       | 11.46   | /20.66                                  | 22.33   | /31.73         | 26.81  | /19.05        |
|       | 1.00    | / .43                                   | •26     | / .06          | • 33   | / .90         |
|       | 1.00    | , ,,,                                   | ***     | , ,,,,         | •55    | , ,,,,        |
| 6.1   | 12.06   | /12.09                                  | 12.44   | /12.43         | 12.39  | /11.41        |
|       | 40.05   | /44.13                                  | 28.81   | /22.93         | 26.69  | /19.10        |
|       | .83     | / .81                                   | • 95    | / .66          | • 4 1  | / .3A         |
| 6.8   | 15.82   | /14.96                                  | 13.37   | /12.88         | 13.91  | /13.17        |
| 0.0   | 24.90   | /23.85                                  | 25.21   | /25.93         | 40.75  | /25.09        |
|       |         |                                         | • •     | _              |        |               |
|       | • 26    | / .60                                   | •97     | / +23          | •71    | / .83         |
| 7.0   | 11.62   | /13.84                                  | 14.40   | /14.49         | 13.73  | /13.51        |
|       | 22.86   | /30.82                                  | 32.31   | /38.45         | 21.36  | /34.61        |
|       | .82     | / 1.00                                  | • 98    | / .96          | • 99   | / .30         |
|       | • • •   |                                         | • 70    | , ,,,          | • , ,  | , •30         |
| 10.0  | 19.19   | /17.75                                  | 21.96(2 | 1/19.99        | 20.85  | /20.03        |
|       | 19.45   | /19.78                                  |         | /36.56         | 37.73  | /35.31        |
|       | 1.00    | / .75                                   | *       | / .60          | •38    | / .95         |
|       | 1.00    | , ,,                                    |         | , ,            | *50    | , , ,         |
| 15.0  | 30.12   | /34.32                                  | 29.49   | /28.81         | 29.35  | /31.24        |
|       | 86.33   | /83.14                                  | 59.33   | /56.54         | 60.27  | /80.99        |
|       | .93     | / •21                                   | •94     | / .86          | •11    | / .36         |
|       | • / 5   | , ,,,                                   | • • •   | , ,            | *11    | <i>y</i> • 30 |
| 20.0  | 33.52(2 | 2)/37.98                                | 40.02   | /40.87         | 39.70  | 740.61        |
|       |         | /65.40                                  | 107.29  | /85.45         | 71.18  | /90.56        |
|       |         | / .97                                   | 1.0     | / .37          | 1.0    | / .59         |
|       | •33     | • • • • • • • • • • • • • • • • • • • • |         | , , ,          |        | / •3.         |
| 25.0  | 49.64   | /51.74                                  | 51.25   | /51.00         | 50.08  | /51.00        |
|       | 89.12   | /58.43                                  | 117.76  | /108.32        | 141.85 | /115.44       |
|       | .99     | / .77                                   | -68     | / .43          | • 41   | / .54         |
|       | • , ,   | , • ,                                   | • 00    | <i>F</i> • ™ ₩ | 141    | 7 4.15        |

FOR EACH A. THE THREE RESULT LINES ARE AS FOLLOWS.

- LINE 1 (.43,...) IS THE MEAN OF THE N DEVIATES. ITS EXPECTED VALUE IS AB.
  A PARENTHETICAL TWO (2) FOLLOWING THE MEAN IMPLIES THAT THE STATISTIC IS
  OUTSIDE THE TWO STANDARD DEVIATION LIMIT.
- LINE 2 (.25,...) IS THE VARIANCE (SUM OF SQUARES OF DEVIATIONS FROM THE MEAN DIVIDED BY N) OF THE N DEVIATES. ITS EXPECTED VALUE IS AB\*\*2.
- LINE 3 IS THE PROBABILITY (KOLMOGOROV SMIRNOV TEST, ASYMPTOTIC) OF REJECTING THE HYPOTHESIS, THAT THE DEVIATES ARE GAMMA (A,B), IN ERROR.
- EXAMPLES: FOR A=20, N=10, THE MEAN (THE TOTAL SEQUENCE BEGAN WITH SEED 123457) OF 33.52 IS OUTSIDE THE TWO STANDARD DEVIATION LIMIT. FOR A=2.3, AND N=100 (SECOND SEED), ONE WOULD REJECT THE NULL HYPOTHESIS AT THE FIVE PERCENT LEVEL).

|      | SUBROUTINE | GGUB  | (ISEED,N,R)                                    | GGU80010     |
|------|------------|-------|------------------------------------------------|--------------|
| С    |            |       |                                                | OS008UDD     |
| . C- | GGUB       | ·S    | LIBRARY 3                                      | -GGUB∩030    |
| C    |            |       |                                                | GGUB0040     |
| C    | FUNCTION   |       | - BASIC UNIFORM (U.1) PSEUDO-PANDOM NUMBER     | GGUB0050     |
| С    |            |       | GENERATOR                                      | GGU90060     |
| С    | USAGE      |       | - CALL GGUB(ISEED:N:R)                         | GGUB0070     |
| C    | PARAMETERS | ISEED | - INPUT. AN INTEGER VALUE IN THE EXCLUSIVE     | GGU80080     |
| C    |            |       | RANGE (1.2147483647). ISEED IS REPLACED BY     | G6U40090     |
| С    |            |       | A NEW ISEED TO BE USED IN SUBSEQUENT CALLS.    | GGU80100     |
| C    |            | N     | - INPUT. THE NUMBER OF DEVIATES TO BE GENERATE |              |
| С    |            |       | ON THIS CALL.                                  | GGUB0120     |
| C    |            | K (N) | - OUTPUT VECTOR OF LENGTH N. CONTAINING THE    | GGUH0130     |
| С    |            |       | FLOATING POINT (0,1) DEVIATES.                 | GGUB0140     |
| C    | PRECISION  |       | - SINGLE                                       | G6UB0150     |
| С    | LANGUAGE   |       | - FORTRAN                                      | GGUH1160     |
| _ ೧~ |            |       | · · · · · · · · · · · · · · · · · · ·          | -GG/14/01/70 |

CALL GGUB (ISEED, N, R)

#### Purpose

GGUB generates N pseudo-random uniform floating point numbers in the interval (0,1).

# Algorithm

Let S=ISEED. Then deviates  $R_{i}$  are generated by

$$S_0 = ISEED$$

$$S_i = 7^5 S_{i-1} \pmod{2^{31}-1}$$

 $R_{i} = 2^{-31}S_{i}$ .

This generator is reported in the following references.

- Lewis, P. A. W., Goodman, A. S., and Miller, J. M., "Psuedo-random number generator for the System/360", <u>IBM Systems Journal</u>, No. 2, 1969.
- Learmonth, G. P. and Lewis, P. A. W., Naval Postgraduate School Random Number Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate School, Monterey, California, June, 197.
- 3. Learmonth, G. P., and Lewis, P. A. W., <u>Statistical Tests of Some Widely Used and Recently Proposed Uniform Random Number Generators</u>, NPS55LW73111A, Naval Postgraduate School, Montere California, November, 1973.

#### Programming Notes

The generator discussed in reference (2) has been reprogrammed in FORTRAN, and resides as generator GGU3 in assembly language form in the IBM Library. Extensive tests (reference 3) show that this generator is adequate for most purposes.

IMSL calls GGUB or its function counterpart GGUBF as its basic generator.

# Example

Timing twenty calls to GGUB (IBM 370/155) with N=1000 resulted in a per deviate time of 48.5 microseconds. This can be compared with a 10.15 microsecond per deviate time when calling the assembly language version GGU3 (in the IBM Library).

# MATH SCIENCE LIBRARY



CONTROL DATA PROPRIETARY PRODUCT

VOLUME 7 PROBABILITY STATISTICS AND TIME SERIES



SUBJECT: FORTRAN IV Subroutine NRML

PURPOSE: Generates pseudo-random numbers having a normal distribution.

METHOD:

The variable 
$$X = \begin{bmatrix} -2 & \ln u_1 \end{bmatrix}^{\frac{1}{2}} \qquad \cos 2\pi u_2$$

has the exact standard normal distribution when the  $u_1$  are uniformly distributed between 0 and 1. The pseudo-random variates  $u_1$  and  $u_2$  are obtained from two different multiplicative congruential generators. The pseudo-random variate, y, with mean  $\mu$  and variance  $\sigma^2$  is then given by

$$y - \sigma X + \mu$$
.

USAGE

DIMENSION X(N\*M)

('All, NRML (N, M, I, XMN, SIG, IU, IV, X, IP)

INPUT

N Total number of random numbers which will be generated

M Total number of variables in data array X

The random numbers will be stored as variable I in array X

XMN Mean value for normal distribution

SIG Standard deviation for normal distribution

IU Start multiplier for one of the multiplicative congruential generators --

must be odd

IV Start multiplier for the other generator -- must be odd

IP Print indicator -- if IP > 0, the random numbers will be printed

OUTPUT

1U Final value of multiplier

IV Final value of multiplier

X Array containing random numbers stored as variable I (The first number

is in location X(I), the second in location X(I + M), the third in location

X(I + 2M), etc.)

SUBROUTINES CALLED: None

ERROR RETURN: None

RESTRICTIONS: None

PRECISION: Single

EQUIPMENT: CDC 6600

LANGUAGE: FORTRAN IV

STORAGE: 110 words

Georgia Tech Box 31521
Atlanta, Georgia 30332
7 March 1977

Mr. Dan Blix

Manager - Industrial Engineering
EASTERN AIRLINES
47 Perimeter Center NE, Suite 103
Atlanta, Georgia 30346

Dear Sir.

We have completed the basic requirements of our project:
"A Simulation Model of Eastern Airline's Mobile Lounge System at
Atlanta Hartsfield International Airport". Enclosed you will find
your copy of the report, and a computer printout which includes
the User's Manual and the simulation program itself.

Application of the simulation model will enable the user to systematically examine critical factors that affect the operation of the Mobile Lounge System, such as scheduling, system utilization, and capital improvement alternatives.

The Frimary benefits to be reaped from the proper use of this simulation program are outlined below:

- 1. Improved scheduling
- 2. Improved decision making involving capital improvements
- 3. Improved customer satisfaction
  - 4. Reduction in operating cost it
  - 5. Convenience to user
  - 6. Competitive advantage

Nevertheless, the primary drawback is that the input information utilized in our simulation program must be regularly upgraded and improved to maintain the relevancy of our model to the current operation of the Mobile Lounge System.

I take this opportunity to remind you of our meeting on Friday March 11<sup>th</sup> at 1:15 P.M. to discuss the features of the simulation program and its future, along with comments, observations, and other recommendations.

The potential impact on the operations of the Mobile Lounge System and the Atlanta Station are astounding, with far reaching implications.

Sincerely yours,

Durgid C. Reigado

Dwight D. Delgado



GENERAL ELECTRIC COMPANY, NELA PARK, CLEVELAND, OHIO 44112
Phone (216)266-3353

MINIATURE

LAMP PRODUCTS

DEPARTMENT

February 21, 1978

Mr. George Harrell 300 N. Washington Street Alexandria, Virginia 22314

Dear George:

I wanted to make sure that you had a copy of the Mobile Lounge Simulation Project Report that we had started over a year ago. As you can see, we completed a basic package that is capable of doing quite a few things for you.

Who can I contact for permission to publish an article on this project? I am sure that Eastern Airlines would like to review the article before publication.

By the way, I am working for General Electric Miniature Lamp Engineering as a Specialist - Materials and Production Control. One of the items I am responsible for is the manufacture of some of your Quartz Halogen aircraft lights in our Pilot Plant.

If you ever drop by in Cleveland, I'll show you around.

Very truly yours,

Dwighd D. Delgado

Encl. DDD/bw



GENERAL ELECTRIC COMPANY, NELA PARK, CLEVELAND, OHIO 44112
Phone (216) 266-3353

MINIATURE

LAMP PRODUCTS

DEPARTMENT

January 21, 1980

John C. Devore, P. E. Industrial Engineering 25 Technology Park/Atlanta Norcross, Georgia 30092

Gentlemen:

Enclosed you will find a copy of the report titled "A Simulation Model of Eastern Airline's Mobile Lounge System at Atlanta International Airport."

I am submitting this report for your consideration and for publication since the applied methodology may be useful to other engineers' in our profession. I also believe that the quality of work involved meets the Industrial Engineering magazine standards for professionalism in practice.

I would like to point out that this project was undertaken and completed by a group of undergraduate Industrial Engineering students at Georgia Tech prior to graduation.

If you need assistance in editing, additional background information, etc., do not hesitate to call.

Thank you,

Very truly yours,

Dwighd D. Delgado

DDD/bw Enclosure

cc: Mr. Steward Kelley

AIIE Chapter Development Manual



MINIATURE LAMP PRODUCTS DEPARTMENT

GENERAL ELECTRIC COMPANY, 1814 EAST 45TH STREET CLEVELAND, OHIO 44103
Phone (216) 266- 4837

**EUCLID LAMP PLANT** 

April 15, 1981

Program Chairman, Charles J. Shub Computer Science 111 Votey Building University of Vermont Burlington, Vermont 05401

Dear Mr. Shub:

Please find enclosed a copy of the report "A Simulation Model of Eastern Airline's Mobile Lounge System at Atlanta International Airport".

This report is being submitted for your consideration at the 1981 Winter Simulation Conference since the applied methodolgy may be useful to other engineers' in our profession.

Very truly yours,

Dwighd D. Delgado

DD: cf

Enclosure



# 1981 WINTER SIMULATION CONFERENCE December 9-11, 1981

Peachtree Plaza Atlanta, Georgia

#### WSC 1981 CONFERENCE COMMITTEE

General Chairman

Claude M. Delfosse CACL Inc. 1815 North Ft. Myer Drive Arlington, Virginia 22209 (703) 841-7800

Associate General Chairman

Don Warner
Department of Computer Science
California State University
6000 J Street
Sacramento, California 95819
(916) 454-6718 or 6834

Program Chairman

Charles J. Shub Computer Science 111 Votey Building University of Vermont Burlington, Vermont 05401 (802) 656-4355

Associate Program Chairman

Francis D. Tuggle Jesse H. Jones Graduate School of Administration Rice University Box 1892 Houston, Texas 77001 (713) 527-4838

Proceedings Editor

Tuncer Oren Computer Science Department University of Ottawa Ortawa, Ontario, Canada KIN6N5 (613) 231-5420

Arrangements Chairman

Jerry Banks School of ISYE Georgia Institute of Technology Atlanta, Georgia 30332 (404) 894-2312

Business Chairman

James O. Henriksen Wolverine Software Corp. P.O. Box 1251 Falls Church, Virginia 22041 (703) 750-3910

Registration Chairman

John Carson School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia 30332 (404) 894-2309 Dear Participant:

It is less than six weeks until the Winter Simulation conference. By now, the proceedings have been put to bed, and the program has reached its final form. By now you should have received your complete preliminary program with registration materials in the centerfold.

The proceedings will be available at the conference, so your presentation may, if you wish, not exactly mirror the printed paper word or word and picture for picture.

An important facet of the program is the participants complimentary breakfast, scheduled at 8:00 a.m. as follows:

Wednesday: Grady Room
Thursday: French Room
Eniday:

Friday: French Room

Please plan to attend so that you may meet with your session chairman and any other participants in your session and to clear up any last minute details. Please feel free to call on me either here in Vermont or at the Conference itself if you have any questions.

I am looking foreward to seeing you in Atlanta.

Sincerely,

Charles M. Shub Program Chairman

#### WSC board of Directors

ORSA: Saul I. Gass College of Business & Managment The University of Maryland College Park., MD 20742 (301) 454-3842

TIMS/College on Simulation

& Gaming:
A. Alan B. Pritske:
Pritsker & Associates, Inc.
P.O. Box 2413
W. Lafavette, IN 47906
(317) 463-5557

AME: Robert G. Sargent Dept. of Indus. Engr. & Oper. Res. 441 Link Hall, Syracuse University Suracuse, New York 13210 (315) 423-4348 (Boord Chairman)

SCS: Lawrence (Larry) Sashkin The Aerospace Carporation Bidg. A3, Med Station 2205 P.O. Lee 92937 Los Angeles. (A 90065 (212) 668-693 ACRI/SIGSIM: Thomas J. Schriber Graduate School of Business Admin. The University of Michigan Ann Arbor, MI 48103 (313) 764-1398 (Board Vice-Chairman)

IEEE/Systems, Men, and Cubernetics Julian Reitman Norden Systems Norwall', CT 06856 (203) 852-4705 IEEE/Computer Society: Richardo Garizia Babcock & Wilcox 20 South Van Buren Berberton, Ohio 44203

November 4, 1981

West street on the target of the same